Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norberto Peporine Lopes is active.

Publication


Featured researches published by Norberto Peporine Lopes.


Química Nova | 2007

Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários

Leonardo Gobbo-Neto; Norberto Peporine Lopes

Since secondary metabolites represent a chemical interface between plants and surrounding environment, their syntheses are frequently affected by environmental conditions. Thus, variations in the total content and/or of the relative proportions of secondary metabolites in plants can take place. We review the main environmental factors that can streamline or alter the production or concentration of secondary metabolites in plants. How seasonality, circadian rhythm, developmental stage and age, temperature, water availability, UV radiation, soil nutrients, altitude, atmospheric composition and tissue damage influence secondary metabolism are discussed.


Journal of Ethnopharmacology | 1999

Antimalarial use of volatile oil from leaves of Virola surinamensis (Rol.) Warb. by Waiapi Amazon Indians

Norberto Peporine Lopes; Massuo J. Kato; Eloisa Helena A. Andrade; José Guilherme S. Maia; Massayoshi Yoshida; Annie R Planchart; Alejandro M. Katzin

The Amazon Indians Waiãpi living in the West of Amapá State of Brazil, treat malaria with an inhalation of vapor obtained from leaves of Viola surinamensis. The essential oil obtained from adult and plantlet leaves was analyzed by GC/MS and 11 monoterpenes, 11 sesquiterpenes and three phenylpropanoids were identified. Plantlet essential oil caused 100% of growth inhibition after 48 h in the development of the young trophozoite to schizont stage and the sesquiterpene nerolidol (100 microg/ml) was identified as one of the active constituents (100% of growth inhibition was obtained). In addition, examination of [U14C]-glucose incorporation showed that activity of nerolidol is related to the inhibition of glycoprotein biosynthesis.


Química Nova | 2002

Produtos naturais: atualidade, desafios e perspectivas

Angelo C. Pinto; Dulce Helena Siqueira Silva; Vanderlan da Silva Bolzani; Norberto Peporine Lopes; Rosângela de A. Epifanio

This article offers an overview on the historical facts and the recent state of art of Chemistry of Natural Products which, in the course of 25 years of SBQ, have led to the present development of this area in Brazil. In addition, this article deals with the last trends on Natural Products in Brazil and also in developed countries.


Phytochemistry | 2000

Analgesic activity of the lignans from Lychnophora ericoides.

Márcio L.C. Borsato; Cristiane F. F. Grael; Glória E.P. Souza; Norberto Peporine Lopes

Lychnophora ericoides is a Brazilian medicinal plant that is commercially available as an analgesic and anti-inflammatory agent. The extract from roots, which yielded 10 lignans, showed analgesic activity in the mouse writhing test and the lignan, cubebin, was one of the most active. Anti-inflammatory and anti-pyretic activities from cubebin (10 mg/kg) revealed no significant effects. In addition two previously unknown methyl clusin derivatives are reported.


Analytical and Bioanalytical Chemistry | 2008

Characterization of interactions between polyphenolic compounds and human serum proteins by capillary electrophoresis

Andrea Diniz; Laura Escuder-Gilabert; Norberto Peporine Lopes; R.M. Villanueva-Camañas; S. Sagrado; María José Medina-Hernández

The interaction of ten natural polyphenolic compounds (chlorogenic acid, apigenin, catechin, epicatechin, flavanone, flavone, quercetin, rutin, vicenin-2 and vitexin) with human serum albumin and mixtures of human serum albumin and α1-acid glycoprotein under near physiological conditions is studied by capillary electrophoresis–frontal analysis. Furthermore, the binding of these polyphenolic compounds to total plasmatic proteins is evaluated using ultrafiltration and capillary electrophoresis. In spite of the relatively small differences in the chemical structures of the compounds studied, large differences were observed in their binding behaviours to plasmatic proteins. The hydrophobicity, the presence/absence of some functional groups, steric hindrance and spatial arrangement seem to be key factors in the affinity of natural polyphenols towards plasmatic proteins.


Toxicology in Vitro | 2011

Analyses of the genotoxic and mutagenic potential of the products formed after the biotransformation of the azo dye Disperse Red 1

Farah Maria Drumond Chequer; Thiago Mescoloto Lizier; Rafael de Felício; Maria Valnice Boldrin Zanoni; Hosana M. Debonsi; Norberto Peporine Lopes; Ricard Marcos; Danielle Palma de Oliveira

Azo dyes constitute the largest class of synthetic dyes. Following oral exposure, these dyes can be reduced to aromatic amines by the intestinal microflora or liver enzymes. This work identified the products formed after oxidation and reduction of the dye Disperse Red 1, simulating hepatic biotransformation and evaluated the mutagenic potential of the resultant solution. Controlled potential electrolysis was carried out on dye solution using a Potentiostat/Galvanostat. HPLC-DAD and GC/MS were used to determine the products generated after the oxidation/reduction process. The Salmonella/microsome assay with the strains TA98 and YG1041 without S9, and the mouse lymphoma assay (MLA) using the thymidine kinase (Tk) gene, were used to evaluate the mutagenicity of the products formed. Sulfate 2-[(4-aminophenyl)ethylamino]-ethanol monohydrate, nitrobenzene, 4-nitro-benzamine and 2-(ethylphenylamino)-ethanol were detected. This dye has already being assigned as mutagenic in different cell system. In addition, after the oxidation/reduction process the dye still had mutagenic activity for the Salmonella/microsome assay. Nevertheless, both the original dye Disperse Red 1 and its treated solutions showed negative results in the MLA. The present results suggest that the ingestion of water and food contaminated with this dye may represent human and environmental health problem, due to the generation of harmful compounds after biotransformation.


Planta Medica | 2011

Plant Extracts, Isolated Phytochemicals, and Plant-Derived Agents Which Are Lethal to Arthropod Vectors of Human Tropical Diseases - A Review

Adrian Martin Pohlit; Alex Ribeiro Rezende; Edson Luiz Lopes Baldin; Norberto Peporine Lopes; Valter Ferreira de Andrade Neto

The recent scientific literature on plant-derived agents with potential or effective use in the control of the arthropod vectors of human tropical diseases is reviewed. Arthropod-borne tropical diseases include: amebiasis, Chagas disease (American trypanosomiasis), cholera, cryptosporidiosis, dengue (hemorrhagic fever), epidemic typhus (Brill-Zinsser disease), filariasis (elephantiasis), giardia (giardiasis), human African trypanosomiasis (sleeping sickness), isosporiasis, leishmaniasis, Lyme disease (lyme borreliosis), malaria, onchocerciasis, plague, recurrent fever, sarcocystosis, scabies (mites as causal agents), spotted fever, toxoplasmosis, West Nile fever, and yellow fever. Thus, coverage was given to work describing plant-derived extracts, essential oils (EOs), and isolated chemicals with toxic or noxious effects on filth bugs (mechanical vectors), such as common houseflies (Musca domestica Linnaeus), American and German cockroaches (Periplaneta americana Linnaeus, Blatella germanica Linnaeus), and oriental latrine/blowflies (Chrysomya megacephala Fabricius) as well as biting, blood-sucking arthropods such as blackflies (Simulium Latreille spp.), fleas (Xenopsylla cheopis Rothschild), kissing bugs (Rhodnius Stål spp., Triatoma infestans Klug), body and head lice (Pediculus humanus humanus Linnaeus, P. humanus capitis De Geer), mosquitoes (Aedes Meigen, Anopheles Meigen, Culex L., and Ochlerotatus Lynch Arribálzaga spp.), sandflies (Lutzomyia longipalpis Lutz & Neiva, Phlebotomus Loew spp.), scabies mites (Sarcoptes scabiei De Geer, S. scabiei var hominis, S. scabiei var canis, S. scabiei var suis), and ticks (Ixodes Latreille, Amblyomma Koch, Dermacentor Koch, and Rhipicephalus Koch spp.). Examples of plant extracts, EOs, and isolated chemicals exhibiting noxious or toxic activity comparable or superior to the synthetic control agents of choice (pyrethroids, organophosphorous compounds, etc.) are provided in the text for many arthropod vectors of tropical diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Low expression of CD39 on regulatory T cells as a biomarker for resistance to methotrexate therapy in rheumatoid arthritis

Raphael S. Peres; Foo Y. Liew; Jhimmy Talbot; Vanessa Carregaro; Renê Donizeti Ribeiro de Oliveira; Sérgio C. L. de Almeida; Rafael F. O. França; Paula B. Donate; Larissa G. Pinto; Flávia Isaura de Santi Ferreira; Diego L. Costa; Daniel P. Demarque; Dayana Rubio Gouvea; Norberto Peporine Lopes; Regina Helena Costa Queiroz; João Santana da Silva; F. J. C. Figueiredo; José C. Alves-Filho; Thiago M. Cunha; Sérgio H. Ferreira; Paulo Louzada-Junior; Fernando Q. Cunha

Significance Methotrexate (MTX) is the first-line therapy for rheumatoid arthritis (RA). However, about 40% of patients are resistant to MTX. Furthermore, MTX resistance is only apparent after a prolonged continuous MTX treatment (>3 mo), by which time the disease of the nonresponders would have aggravated. Thus, there is a considerable unmet need for a biomarker to select MTX-resistant patients and place them immediately on alternative therapy. We found here that the low density of CD39 on peripheral regulatory T cells in RA patients is a rapid, convenient, and reliable (P < 0.01) biomarker for MTX resistance. Our findings also provide previously unrecognized information on aspects of immune regulation in RA and the mechanism of action of MTX. Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by joint destruction and severe morbidity. Methotrexate (MTX) is the standard first-line therapy of RA. However, about 40% of RA patients are unresponsive to MTX treatment. Regulatory T cells (Tregs, CD4+CD25+FoxP3+) are thought to play an important role in attenuating RA. To investigate the role of Tregs in MTX resistance, we recruited 122 RA patients (53 responsive, R-MTX; 69 unresponsive, UR-MTX) and 33 healthy controls. Three months after MTX treatment, R-MTX but not UR-MTX showed higher frequency of peripheral blood CD39+CD4+CD25+FoxP3+ Tregs than the healthy controls. Tregs produce adenosine (ADO) through ATP degradation by sequential actions of two cell surface ectonucleotidases: CD39 and CD73. Tregs from UR-MTX expressed a lower density of CD39, produced less ADO, and had reduced suppressive activity than Tregs from R-MTX. In a prospective study, before MTX treatment, UR-MTX expressed a lower density of CD39 on Tregs than those of R-MTX or control (P < 0.01). In a murine model of arthritis, CD39 blockade reversed the antiarthritic effects of MTX treatment. Our results demonstrate that MTX unresponsiveness in RA is associated with low expression of CD39 on Tregs and the decreased suppressive activity of these cells through reduced ADO production. Our findings thus provide hitherto unrecognized mechanism of immune regulation in RA and on mode of action of MTX. Furthermore, our data suggest that low expression of CD39 on Tregs could be a noninvasive biomarker for identifying MTX-resistant RA patients.


Planta Medica | 2011

Patent Literature on Mosquito Repellent Inventions which Contain Plant Essential Oils – A Review

Adrian Martin Pohlit; Norberto Peporine Lopes; Renata Antonaci Gama; Wanderli Pedro Tadei; Valter Ferreira de Andrade Neto

Bites Bites of mosquitoes belonging to the genera Anopheles Meigen, Aedes Meigen, Culex L. and Haemagogus L. are a general nuisance and are responsible for the transmission of important tropical diseases such as malaria, hemorrhagic dengue and yellow fevers and filariasis (elephantiasis). Plants are traditional sources of mosquito repelling essential oils (EOs), glyceridic oils and repellent and synergistic chemicals. A Chemical Abstracts search on mosquito repellent inventions containing plant-derived EOs revealed 144 active patents mostly from Asia. Chinese, Japanese and Korean language patents and those of India (in English) accounted for roughly 3/4 of all patents. Since 1998 patents on EO-containing mosquito repellent inventions have almost doubled about every 4 years. In general, these patents describe repellent compositions for use in topical agents, cosmetic products, incense, fumigants, indoor and outdoor sprays, fibers, textiles among other applications. 67 EOs and 9 glyceridic oils were individually cited in at least 2 patents. Over 1/2 of all patents named just one EO. Citronella [Cymbopogon nardus (L.) Rendle, C.winterianus Jowitt ex Bor] and eucalyptus (Eucalyptus LʼHér. spp.) EOs were each cited in approximately 1/3 of all patents. Camphor [Cinnamomum camphora (L.) J. Presl], cinnamon (Cinnamomum zeylanicum Blume), clove [Syzygium aromaticum (L.) Merr. & L.M. Perry], geranium (Pelargonium graveolens LʼHér.), lavender (Lavandula angustifolia Mill.), lemon [Citrus × limon (L.) Osbeck], lemongrass [Cymbopogon citratus (DC.) Stapf] and peppermint (Mentha × piperita L.) EOs were each cited in > 10% of patents. Repellent chemicals present in EO compositions or added as pure “natural” ingredients such as geraniol, limonene, p-menthane-3,8-diol, nepetalactone and vanillin were described in approximately 40% of all patents. About 25% of EO-containing inventions included or were made to be used with synthetic insect control agents having mosquito repellent properties such as pyrethroids, N,N-diethyl-m-toluamide (DEET), (±)-p-menthane-3,8-diol (PMD) and dialkyl phthalates. Synergistic effects involving one or more EOs and synthetic and/or natural components were claimed in about 10% of all patents. Scientific literature sources provide evidence for the mosquito repellency of many of the EOs and individual chemical components found in EOs used in patented repellent inventions.


Drying Technology | 2008

Volatile Retention and Antifungal Properties of Spray-Dried Microparticles of Lippia sidoides Essential Oil

Luciana Maria Paes da Silva Ramos Fernandes; Izabel Cristina Casanova Turatti; Norberto Peporine Lopes; Joseane Cristina Ferreira; Regina Celia Candido; Wanderley P. Oliveira

Spray drying microencapsulation of Lippia sidoides essential oil was investigated. Maltodextrin DE10 and gum arabic at different proportions (4:1, 3:2, 2:3, 0:1 m/m) was used as a carrier. The content of essential oil related to the carrier was 20 and 25% in weight and the emulsions were atomized from 30% up to 60% (m/m) of total solid concentration. Spray dryer inlet temperatures varied from 140 to 160°C and the best thermal efficiency and powder recovery were found at 160°C. Product properties and process performance were assessed on the basis of microscopic features of the powder (shape and size of microparticles), moisture content, and powder recovery. Encapsulation efficiency was estimated through determination of the content of essential oil in the microcapsules. The best encapsulation efficiency was related to experimental parameters as follows: solid content of the encapsulating composition of 50% (m/m), maltodextrin:gum arabic ratio of 0:1 (m/m) and carrier:essential oil ratio of 4:1 (m/m). Antifungal activities of microparticles were evaluated, evidencing their potential as important antifungal agents. The positive findings in this study encourage further research and provide perspectives for the development of phytotherapeutic products from essential oil of Lippia sidoides.

Collaboration


Dive into the Norberto Peporine Lopes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Massuo J. Kato

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge