Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noreena L. Sweeney is active.

Publication


Featured researches published by Noreena L. Sweeney.


Nucleic Acids Research | 2012

Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays

Sourav Mukherjee; Alicia M. Hanson; William R. Shadrick; Jean Ndjomou; Noreena L. Sweeney; John J. Hernandez; Diana Bartczak; Kelin Li; Kevin J. Frankowski; Julie A. Heck; Leggy A. Arnold; Frank Schoenen; David N. Frick

Typical assays used to discover and analyze small molecules that inhibit the hepatitis C virus (HCV) NS3 helicase yield few hits and are often confounded by compound interference. Oligonucleotide binding assays are examined here as an alternative. After comparing fluorescence polarization (FP), homogeneous time-resolved fluorescence (HTRF®; Cisbio) and AlphaScreen® (Perkin Elmer) assays, an FP-based assay was chosen to screen Sigma’s Library of Pharmacologically Active Compounds (LOPAC) for compounds that inhibit NS3-DNA complex formation. Four LOPAC compounds inhibited the FP-based assay: aurintricarboxylic acid (ATA) (IC50 = 1.4 μM), suramin sodium salt (IC50 = 3.6 μM), NF 023 hydrate (IC50 = 6.2 μM) and tyrphostin AG 538 (IC50 = 3.6 μM). All but AG 538 inhibited helicase-catalyzed strand separation, and all but NF 023 inhibited replication of subgenomic HCV replicons. A counterscreen using Escherichia coli single-stranded DNA binding protein (SSB) revealed that none of the new HCV helicase inhibitors were specific for NS3h. However, when the SSB-based assay was used to analyze derivatives of another non-specific helicase inhibitor, the main component of the dye primuline, it revealed that some primuline derivatives (e.g. PubChem CID50930730) are up to 30-fold more specific for HCV NS3h than similarly potent HCV helicase inhibitors.


Biochemistry | 2013

Aurintricarboxylic acid modulates the affinity of hepatitis C virus NS3 helicase for both nucleic acid and ATP.

William R. Shadrick; Sourav Mukherjee; Alicia M. Hanson; Noreena L. Sweeney; David N. Frick

Aurintricarboxylic acid (ATA) is a potent inhibitor of many enzymes needed for cell and virus replication, such as polymerases, helicases, nucleases, and topoisomerases. This study examines how ATA interacts with the helicase encoded by the hepatitis C virus (HCV) and reveals that ATA interferes with both nucleic acid and ATP binding to the enzyme. We show that ATA directly binds HCV helicase to prevent the enzyme from interacting with nucleic acids and to modulate the affinity of HCV helicase for ATP, the fuel for helicase action. Amino acid substitutions in the helicase DNA binding cleft or its ATP binding site alter the ability of ATA to disrupt helicase-DNA interactions. These data, along with molecular modeling results, support the notion that an ATA polymer binds between Arg467 and Glu493 to prevent the helicase from binding either ATP or nucleic acids. We also characterize how ATA affects the kinetics of helicase-catalyzed ATP hydrolysis, and thermodynamic parameters describing the direct interaction between HCV helicase and ATA using microcalorimetry. The thermodynamics of ATA binding to HCV helicase reveal that ATA binding does not mimic nucleic acid binding in that ATA binding is driven by a smaller enthalpy change and an increase in entropy.


ACS Chemical Biology | 2014

Ebselen Inhibits Hepatitis C Virus NS3 Helicase Binding to Nucleic Acid and Prevents Viral Replication

Sourav Mukherjee; Warren S. Weiner; Chad E. Schroeder; Denise S. Simpson; Alicia M. Hanson; Noreena L. Sweeney; Rachel K. Marvin; Jean Ndjomou; Rajesh Kolli; Dragan Isailovic; Frank J. Schoenen; David N. Frick

The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 μM ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 μM, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure–activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines.


Antiviral Research | 2012

Fluorescent primuline derivatives inhibit hepatitis C virus NS3-catalyzed RNA unwinding, peptide hydrolysis and viral replicase formation.

Jean Ndjomou; Rajesh Kolli; Sourav Mukherjee; William R. Shadrick; Alicia M. Hanson; Noreena L. Sweeney; Diana Bartczak; Kelin Li; Kevin J. Frankowski; Frank J. Schoenen; David N. Frick

The hepatitis C virus (HCV) multifunctional nonstructural protein 3 (NS3) is a protease that cleaves viral and host proteins and a helicase that separates DNA and RNA structures in reactions fueled by ATP hydrolysis. Li et al. (2012) recently synthesized a series of new NS3 helicase inhibitors from the benzothiazole dimer component of the fluorescent yellow dye primuline. This study further characterizes a subset of these primuline derivatives with respect to their specificity, mechanism of action, and effect on cells harboring HCV subgenomic replicons. All compounds inhibited DNA and RNA unwinding catalyzed by NS3 from different HCV genotypes, but only some inhibited the NS3 protease function, and few had any effect on HCV NS3 catalyzed ATP hydrolysis. A different subset contained potent inhibitors of RNA stimulated ATP hydrolysis catalyzed by the related NS3 protein from Dengue virus. In assays monitoring intrinsic protein fluorescence in the absence of nucleic acids, the compounds cooperatively bound NS3 with K(d)s that reflect their potency in assays. The fluorescent properties of the primuline derivatives both in vitro and in cells are also described. The primuline derivative that was the most active against subgenomic replicons in cells caused a 14-fold drop in HCV RNA levels (IC(50)=5±2μM). In cells, the most effective primuline derivative did not inhibit the cellular activity of NS3 protease but disrupted HCV replicase structures.


European Journal of Medicinal Chemistry | 2015

Discovery of the 2-phenyl-4,5,6,7-Tetrahydro-1H-indole as a novel anti-hepatitis C virus targeting scaffold.

Ivan A. Andreev; Dinesh Manvar; Maria Letizia Barreca; Dmitry S. Belov; Amartya Basu; Noreena L. Sweeney; Nina K. Ratmanova; Evgeny R. Lukyanenko; Giuseppe Manfroni; Violetta Cecchetti; David N. Frick; Andrea Altieri; Neerja Kaushik-Basu; Alexander V. Kurkin

Although all-oral direct-acting antiviral (DAA) therapy for hepatitis C virus (HCV) treatment is now a reality, todays HCV drugs are expensive, and more affordable drugs are still urgently needed. In this work, we report the identification of the 2-phenyl-4,5,6,7-Tetrahydro-1H-indole chemical scaffold that inhibits cellular replication of HCV genotype 1b and 2a subgenomic replicons. The anti-HCV genotype 1b and 2a profiling and effects on cell viability of a selected representative set of derivatives as well as their chemical synthesis are described herein. The most potent compound 39 displayed EC50 values of 7.9 and 2.6 μM in genotype 1b and 2a, respectively. Biochemical assays showed that derivative 39 had no effect on HCV NS5B polymerase, NS3 helicase, IRES mediated translation and selected host factors. Thus, future work will involve both the chemical optimization and target identification of 2-phenyl-4,5,6,7-Tetrahydro-1H-indoles as new anti-HCV agents.


Journal of Biological Chemistry | 2013

Primuline Derivatives That Mimic RNA to Stimulate Hepatitis C Virus NS3 Helicase-catalyzed ATP Hydrolysis

Noreena L. Sweeney; William R. Shadrick; Sourav Mukherjee; Kelin Li; Kevin J. Frankowski; Frank J. Schoenen; David N. Frick

Background: DNA/RNA stimulates the ATPase function of a helicase by an unclear mechanism. Results: A primuline derivative specifically stimulates the ATPase function of only the HCV genotype 1b NS3 helicase. Conclusion: Small molecules can mimic RNA to stimulate the NS3 ATPase by binding near NS3 residues Arg-393, Glu-493, and Ser-231. Significance: Compounds reveal key residues needed for ATP hydrolysis to fuel helicase movements. ATP hydrolysis fuels the ability of helicases and related proteins to translocate on nucleic acids and separate base pairs. As a consequence, nucleic acid binding stimulates the rate at which a helicase catalyzes ATP hydrolysis. In this study, we searched a library of small molecule helicase inhibitors for compounds that stimulate ATP hydrolysis catalyzed by the hepatitis C virus (HCV) NS3 helicase, which is an important antiviral drug target. Two compounds were found that stimulate HCV helicase-catalyzed ATP hydrolysis, both of which are amide derivatives synthesized from the main component of the yellow dye primuline. Both compounds possess a terminal pyridine moiety, which was critical for stimulation. Analogs lacking a terminal pyridine inhibited HCV helicase catalyzed ATP hydrolysis. Unlike other HCV helicase inhibitors, the stimulatory compounds differentiate between helicases isolated from various HCV genotypes and related viruses. The compounds only stimulated ATP hydrolysis catalyzed by NS3 purified from HCV genotype 1b. They inhibited helicases from other HCV genotypes (e.g. 1a and 2a) or related flaviviruses (e.g. Dengue virus). The stimulatory compounds interacted with HCV helicase in the absence of ATP with dissociation constants of about 2 μm. Molecular modeling and site-directed mutagenesis studies suggest that the stimulatory compounds bind in the HCV helicase RNA-binding cleft near key residues Arg-393, Glu-493, and Ser-231.


Bios | 2010

The corral trap: fabrication and software development

Christine A. Carlson; Noreena L. Sweeney; Michael J. Nasse; J. C. Woehl

We describe the fabrication of a corral trap, a new tool for the two-dimensional trapping of nanoscale particles, and present a software algorithm for automated trapping of a single particle and sequential trapping of multiple particles.


ACS Chemical Biology | 2015

Simultaneously Targeting the NS3 Protease and Helicase Activities for More Effective Hepatitis C Virus Therapy

Jean Ndjomou; M. Josie Corby; Noreena L. Sweeney; Alicia M. Hanson; Cihan Aydin; Akbar Ali; Celia A. Schiffer; Kelin Li; Kevin J. Frankowski; Frank J. Schoenen; David N. Frick

This study examines the specificity and mechanism of action of a recently reported hepatitis C virus (HCV) nonstructural protein 3 (NS3) helicase-protease inhibitor (HPI), and the interaction of HPI with the NS3 protease inhibitors telaprevir, boceprevir, danoprevir, and grazoprevir. HPI most effectively reduced cellular levels of subgenomic genotype 4a replicons, followed by genotypes 3a and 1b replicons. HPI had no effect on HCV genotype 2a or dengue virus replicon levels. Resistance evolved more slowly to HPI than telaprevir, and HPI inhibited telaprevir-resistant replicons. Molecular modeling and analysis of the ability of HPI to inhibit peptide hydrolysis catalyzed by a variety of wildtype and mutant NS3 proteins suggested that HPI forms a bridge between the NS3 RNA-binding cleft and an allosteric site previously shown to bind other protease inhibitors. In most combinations, the antiviral effect of HPI was additive with telaprevir and boceprevir, minor synergy was observed with danoprevir, and modest synergy was observed with grazoprevir.


The Journal of Antibiotics | 2017

Docking into Mycobacterium tuberculosis Thioredoxin Reductase Protein Yields Pyrazolone Lead Molecules for Methicillin-Resistant Staphylococcus aureus

Noreena L. Sweeney; Lauren Lipker; Alicia M. Hanson; Chris Bohl; Katie Engel; Kelsey S. Kalous; Mary E. Stemper; Daniel S. Sem; William R. Schwan

The thioredoxin/thioredoxin reductase system (Trx/TrxR) is an attractive drug target because of its involvement in a number of important physiological processes, from DNA synthesis to regulating signal transduction. This study describes the finding of pyrazolone compounds that are active against Staphylococcus aureus. Initially, the project was focused on discovering small molecules that may have antibacterial properties targeting the Mycobacterium tuberculosis thioredoxin reductase. This led to the discovery of a pyrazolone scaffold-containing compound series that showed bactericidal capability against S. aureus strains, including drug-resistant clinical isolates. The findings support continued development of the pyrazolone compounds as potential anti-S. aureus antibiotics.


ACS Infectious Diseases | 2015

Benzothiazole and Pyrrolone Flavivirus Inhibitors Targeting the Viral Helicase

Noreena L. Sweeney; Alicia M. Hanson; Sourav Mukherjee; Jean Ndjomou; Brian J. Geiss; J. Jordan Steel; Kevin J. Frankowski; Kelin Li; Frank J. Schoenen; David N. Frick

Collaboration


Dive into the Noreena L. Sweeney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alicia M. Hanson

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Sourav Mukherjee

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Jean Ndjomou

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Kelin Li

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William R. Shadrick

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Rajesh Kolli

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge