Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norelle L. Daly is active.

Publication


Featured researches published by Norelle L. Daly.


Toxicon | 2001

The cystine knot motif in toxins and implications for drug design

David J. Craik; Norelle L. Daly; Clement Waine

The cystine knot structural motif is present in peptides and proteins from a variety of species, including fungi, plants, marine molluscs, insects and spiders. It comprises an embedded ring formed by two disulfide bonds and their connecting backbone segments which is threaded by a third disulfide bond. It is invariably associated with nearby beta-sheet structure and appears to be a highly efficient motif for structure stabilization. Because of this stability it makes an ideal framework for molecular engineering applications. In this review we summarize the main structural features of the cystine knot motif, focussing on toxin molecules containing either the inhibitor cystine knot or the cyclic cystine knot. Peptides containing these motifs are 26-48 residues long and include ion channel blockers, haemolytic agents, as well as molecules having antiviral and antibacterial activities. The stability of peptide toxins containing the cystine knot motif, their range of bioactivities and their unique structural scaffold can be harnessed for molecular engineering applications and in drug design. Applications of cystine knot molecules for the treatment of pain, and their potential use in antiviral and antibacterial applications are described.


Advanced Drug Delivery Reviews | 2004

Discovery, structure and biological activities of cyclotides.

Norelle L. Daly; David J. Craik

Cyclotides are small disulfide-rich peptides that are characterized by a head-to-tail cyclized peptide backbone and a knotted arrangement of three conserved disulfide bonds. They are present in many plants from the Violaceae, Rubiaceae and Cucurbitaceae families, with individual plants expressing a suite of dozens of cyclotides. So far >140 sequences and 15 three-dimensional structures have been determined but it is estimated that the family probably comprises many thousands of members. Their primary function in plants is thought to be as defense agents, based on their potent insecticidal activity, but they also have a range of other biological activities, including anti-HIV, antimicrobial and cytotoxic activities. Because of their exceptional stability they have attracted interest as templates for protein engineering and drug design applications. This article gives an overview of the discovery of cyclotides, describes their unique structural features and range of bioactivities, and discusses their applications in drug design.


Journal of Medicinal Chemistry | 2008

Engineering Stabilized Vascular Endothelial Growth Factor-A Antagonists : Synthesis, Structural Characterization, and Bioactivity of Grafted Analogues of Cyclotides

Sunithi Gunasekera; Fiona M. Foley; Richard J. Clark; Lillian Sando; Louis J. Fabri; David J. Craik; Norelle L. Daly

Cyclotides are plant derived mini-proteins with compact folded structures and exceptional stability. Their stability derives from a head-to-tail cyclized backbone coupled with a cystine knot arrangement of three-conserved disulfide bonds. Taking advantage of this stable framework we developed novel VEGF-A antagonists by grafting a peptide epitope involved in VEGF-A antagonism onto the stable cyclotide framework. Antagonists of this kind have potential therapeutic applications in diseases where angiogenesis is an important component of disease progression, including cancer and rheumatoid arthritis. A grafted analogue showed biological activity in an in vitro VEGF-A antagonism assay at low micromolar concentration and the in vitro stability of the target epitope was markedly increased using this approach. In general, the stabilization of bioactive peptide epitopes is a significant problem in medicinal chemistry and in the current study we have provided insight into one approach to stabilize these peptides in a biological environment.


Biochemical Journal | 2006

Structural plasticity of the cyclic-cystine-knot framework: implications for biological activity and drug design

Richard J. Clark; Norelle L. Daly; David J. Craik

The cyclotide family of plant proteins is of interest because of their unique topology, which combines a head-to-tail cyclic backbone with an embedded cystine knot, and because their remarkable chemical and biological properties make them ideal candidates as grafting templates for biologically active peptide epitopes. The present study describes the first steps towards exploiting the cyclotide framework by synthesizing and structurally characterizing two grafted analogues of the cyclotide kalata B1. The modified peptides have polar or charged residues substituted for residues that form part of a surface-exposed hydrophobic patch that plays a significant role in the folding and biological activity of kalata B1. Both analogues retain the native cyclotide fold, but lack the undesired haemolytic activity of their parent molecule, kalata B1. This finding confirms the tolerance of the cyclotide framework to residue substitutions and opens up possibilities for the substitution of biologically active peptide epitopes into the framework.


Journal of Biological Chemistry | 2006

θ-Defensins Prevent HIV-1 Env-mediated Fusion by Binding gp41 and Blocking 6-Helix Bundle Formation

Stephen A. Gallo; Wei Wang; Satinder S. Rawat; Grace Jung; Alan J. Waring; Alexander M. Cole; Hong Lu; Xuxia Yan; Norelle L. Daly; David J. Craik; Shibo Jiang; Robert I. Lehrer; Robert Blumenthal

Retrocyclin-1, a θ-defensin, protects target cells from human immunodeficiency virus, type 1 (HIV-1) by preventing viral entry. To delineate its mechanism, we conducted fusion assays between susceptible target cells and effector cells that expressed HIV-1 Env. Retrocyclin-1 (4 μm) completely blocked fusion mediated by HIV-1 Envs that used CXCR4 or CCR5 but had little effect on cell fusion mediated by HIV-2 and simian immunodeficiency virus Envs. Retrocyclin-1 inhibited HIV-1 Env-mediated fusion without impairing the lateral mobility of CD4, and it inhibited the fusion of CD4-deficient cells with cells bearing CD4-independent HIV-1 Env. Thus, it could act without cross-linking membrane proteins or inhibiting gp120-CD4 interactions. Retrocyclin-1 acted late in the HIV-1 Env fusion cascade but prior to 6-helix bundle formation. Surface plasmon resonance experiments revealed that retrocyclin bound the ectodomain of gp41 with high affinity in a glycan-independent manner and that it bound selectively to the gp41 C-terminal heptad repeat. Native-PAGE, enzyme-linked immunosorbent assay, and CD spectroscopic analyses all revealed that retrocyclin-1 prevented 6-helix bundle formation. This mode of action, although novel for an innate effector molecule, resembles the mechanism of peptidic entry inhibitors based on portions of the gp41 sequence.


Journal of Biological Chemistry | 2008

Alanine Scanning Mutagenesis of the Prototypic Cyclotide Reveals a Cluster of Residues Essential for Bioactivity

Shane M. Simonsen; Lillian Sando; Conan K. Wang; Michelle L. Colgrave; Norelle L. Daly; David J. Craik

The cyclotides are stable plant-derived mini-proteins with a topologically circular peptide backbone and a knotted arrangement of three disulfide bonds that form a cyclic cystine knot structural framework. They display a wide range of pharmaceutically important bioactivities, but their natural function is in plant defense as insecticidal agents. To determine the influence of individual residues on structure and activity in the prototypic cyclotide kalata B1, all 23 non-cysteine residues were successively replaced with alanine. The structure was generally tolerant of modification, indicating that the framework is a viable candidate for the stabilization of bioactive peptide epitopes. Remarkably, insecticidal and hemolytic activities were both dependent on a common, well defined cluster of hydrophilic residues on one face of the cyclotide. Interestingly, this cluster is separate from the membrane binding face of the cyclotides. Overall, the mutagenesis data provide an important insight into cyclotide biological activity and suggest that specific self-association, in combination with membrane binding mediates cyclotide bioactivities.


Journal of Biological Chemistry | 2006

α-Selenoconotoxins, a New Class of Potent α7 Neuronal Nicotinic Receptor Antagonists

Christopher J. Armishaw; Norelle L. Daly; Simon T. Nevin; David J. Adams; David J. Craik; Paul F. Alewood

Disulfide bonds are important structural motifs that play an essential role in maintaining the conformational stability of many bioactive peptides. Of particular importance are the conotoxins, which selectively target a wide range of ion channels that are implicated in numerous disease states. Despite the enormous potential of conotoxins as therapeutics, their multiple disulfide bond frameworks are inherently unstable under reducing conditions. Reduction or scrambling by thiol-containing molecules such as glutathione or serum albumin in intracellular or extracellular environments such as blood plasma can decrease their effectiveness as drugs. To address this issue, we describe a new class of selenoconotoxins where cysteine residues are replaced by selenocysteine to form isosteric and nonreducible diselenide bonds. Three isoforms of α-conotoxin ImI were synthesized by t-butoxycarbonyl chemistry with systematic replacement of one ([Sec2,8]ImI or [Sec3,12]ImI), or both ([Sec2,3,8,12]ImI) disulfide bonds with a diselenide bond. Each analogue demonstrated remarkable stability to reduction or scrambling under a range of chemical and biological reducing conditions. Three-dimensional structural characterization by NMR and CD spectroscopy indicates conformational preferences that are very similar to those of native ImI, suggesting fully isomorphic structures. Additionally, full bioactivity was retained at the α7 nicotinic acetylcholine receptor, with each selenoanalogue exhibiting a dose-response curve that overlaps with wild-type ImI, thus further supporting an isomorphic structure. These results demonstrate that selenoconotoxins can be used as highly stable scaffolds for the design of new drugs.


ACS Chemical Biology | 2011

Discovery of Cyclotides in the Fabaceae Plant Family Provides New Insights into the Cyclization, Evolution, and Distribution of Circular Proteins

Aaron G. Poth; Michelle L. Colgrave; Reynold Philip; Bomai Kerenga; Norelle L. Daly; Marilyn A. Anderson; David J. Craik

Cyclotides are plant proteins whose defining structural features are a head-to-tail cyclized backbone and three interlocking disulfide bonds, which in combination are known as a cyclic cystine knot. This unique structural motif confers cyclotides with exceptional resistance to proteolysis. Their endogenous function is thought to be as plant defense agents, associated with their insecticidal and larval growth-inhibitory properties. However, in addition, an array of pharmaceutically relevant biological activities has been ascribed to cyclotides, including anti-HIV, anthelmintic, uterotonic, and antimicrobial effects. So far, >150 cyclotides have been elucidated from members of the Rubiaceae, Violaceae, and Cucurbitaceae plant families, but their wider distribution among other plant families remains unclear. Clitoria ternatea (Butterfly pea) is a member of plant family Fabaceae and through its usage in traditional medicine to aid childbirth bears similarity to Oldenlandia affinis, from which many cyclotides have been isolated. Using a combination of nanospray and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) analyses, we examined seed extracts of C. ternatea and discovered cyclotides in the Fabaceae, the third-largest family of flowering plants. We characterized 12 novel cyclotides, thus expanding knowledge of cyclotide distribution and evolution within the plant kingdom. The discovery of cyclotides containing novel sequence motifs near the in planta cyclization site has provided new insights into cyclotide biosynthesis. In particular, MS analyses of the novel cyclotides from C. ternatea suggest that Asn to Asp variants at the cyclization site are more common than previously recognized. Moreover, this study provides impetus for the examination of other economically and agriculturally significant species within Fabaceae, now the largest plant family from which cyclotides have been described.


Journal of Biological Chemistry | 2009

The Biological Activity of the Prototypic Cyclotide Kalata B1 Is Modulated by the Formation of Multimeric Pores

Yen-Hua Huang; Michelle L. Colgrave; Norelle L. Daly; Asbed M. Keleshian; Boris Martinac; David J. Craik

The cyclotides are a large family of circular mini-proteins containing a cystine knot motif. They are expressed in plants as defense-related proteins, with insecticidal activity. Here we investigate their role in membrane interaction and disruption. Kalata B1, a prototypic cyclotide, was found to induce leakage of the self-quenching fluorophore, carboxyfluorescein, from phospholipid vesicles. Alanine-scanning mutagenesis of kalata B1 showed that residues essential for lytic activity are clustered, forming a bioactive face. Kalata B1 was sequestered at the membrane surface and showed slow dissociation from vesicles. Electrophysiological experiments showed that conductive pores were induced in liposome patches on incubation with kalata B1. The conductance calculated from the current-voltage relationship indicated that the diameter of the pores formed in the bilayer patches is 41–47 Å. Collectively, the findings provide a mechanistic explanation for the diversity of biological functions ascribed to this fascinating family of ultrastable macrocyclic peptides.


Journal of Biological Chemistry | 2011

Identification and characterization of a new family of cell penetrating peptides: Cyclic cell penetrating peptides

Laura Cascales; Sónia Troeira Henriques; Markus C. Kerr; Yen-Hua Huang; Matthew J. Sweet; Norelle L. Daly; David J. Craik

Cell-penetrating peptides can translocate across the plasma membrane of living cells and thus are potentially useful agents in drug delivery applications. Disulfide-rich cyclic peptides also have promise in drug design because of their exceptional stability, but to date only one cyclic peptide has been reported to penetrate cells, the Momordica cochinchinensis trypsin inhibitor II (MCoTI-II). MCoTI-II belongs to the cyclotide family of plant-derived cyclic peptides that are characterized by a cyclic cystine knot motif. Previous studies in fixed cells showed that MCoTI-II could penetrate cells but kalata B1, a prototypic cyclotide from a separate subfamily of cyclotides, was bound to the plasma membrane and did not translocate into cells. Here, we show by live cell imaging that both MCoTI-II and kalata B1 can enter cells. Kalata B1 has the same cyclic cystine knot structural motif as MCoTI-II but differs significantly in sequence, and the mechanism by which these two peptides enter cells also differs. MCoTI-II appears to enter via macropinocytosis, presumably mediated by interaction of positively charged residues with phosphoinositides in the cell membrane, whereas kalata B1 interacts directly with the membrane by targeting phosphatidylethanolamine phospholipids, probably leading to membrane bending and vesicle formation. We also show that another plant-derived cyclic peptide, SFTI-1, can penetrate cells. SFTI-1 includes just 14 amino acids and, with the exception of its cyclic backbone, is structurally very different from the cyclotides, which are twice the size. Intriguingly, SFTI-1 does not interact with any of the phospholipids tested, and its mechanism of penetration appears to be distinct from MCoTI-II and kalata B1. The ability of diverse disulfide-rich cyclic peptides to penetrate cells enhances their potential in drug design, and we propose a new classification for them, i.e. cyclic cell-penetrating peptides.

Collaboration


Dive into the Norelle L. Daly's collaboration.

Top Co-Authors

Avatar

David J. Craik

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon T. Nevin

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Lai Yue Chan

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Michelle L. Colgrave

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. Wade

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge