Norhaniza Aminudin
University of Malaya
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Norhaniza Aminudin.
Evidence-based Complementary and Alternative Medicine | 2012
Noorlidah Abdullah; Siti Marjiana Ismail; Norhaniza Aminudin; Adawiyah Suriza Shuib; Beng Fye Lau
Considering the importance of diet in prevention of oxidative stress-related diseases including hypertension, this study was undertaken to evaluate the in vitro antioxidant and ACE inhibitory activities of selected culinary-medicinal mushrooms extracted by boiling in water for 30 min. Antioxidant capacity was measured using the following assays: DPPH free radical scavenging activity, β-carotene bleaching, inhibition of lipid peroxidation, reducing power ability, and cupric ion reducing antioxidant capacity (CUPRAC). Antioxidant potential of each mushroom species was calculated based on the average percentages relative to quercetin and summarized as Antioxidant Index (AI). Ganoderma lucidum (30.1%), Schizophyllum commune (27.6%), and Hericium erinaceus (17.7%) showed relatively high AI. Total phenolics in these mushrooms varied between 6.19 to 63.51 mg GAE/g extract. In the ACE inhibitory assay, G. lucidum was shown to be the most potent species (IC50 = 50 μg/mL). Based on our findings, culinary-medicinal mushrooms can be considered as potential source of dietary antioxidant and ACE inhibitory agents.
BMC Complementary and Alternative Medicine | 2013
Hasni Misbah; Azlina Abdul Aziz; Norhaniza Aminudin
BackgroundDiabetes is a serious metabolic disorder affecting the metabolism of carbohydrate, protein and fat. A number of studies have shown that diabetes mellitus is associated with oxidative stress, leading to an increased production of reactive oxygen species. Ficus deltoidea is traditionally used in Malaysia for regulating blood sugar, blood pressure and cholesterol levels. The use of F. deltoidea as an alternative medicinal herb is increasingly gaining popularity with the sale of F. deltoidea tea bags and capsules in the local market. The present study was undertaken to investigate the antidiabetic and antioxidant activities of the fruits from different varieties of F. deltoidea, employing in vitro methods.MethodTwo fruit varieties of F. deltoidea (var. angustifolia (SF) and var. kunstleri (BF)) were extracted separately using double-distilled water. The resulting aqueous extracts were partitioned using ethyl acetate to obtain the ethyl acetate and water fractions. The crude aqueous extracts and the corresponding fractions were evaluated for their phenolic, flavonoid, sugar and protein contents. Protein profiling of the extracts and fractions were also carried out by means of SDS-PAGE and SELDI-TOF MS. Antidiabetic activities were assessed based on the ability of the samples to inhibit yeast and mammalian α-glucosidase as well as α-amylase. Antioxidant capacities were examined by measuring the ability of the samples to reduce ferric ions and to scavenge DPPH, superoxide anion, ABTS and nitric oxide radicals.ResultsThe crude extracts and fractions of SF and BF inhibited both yeast and rat intestinal α-glucosidases in a dose-dependent manner, but did not inhibit porcine pancreatic α-amylase. The water fraction of BF showed the highest percentage of α-glucosidase inhibition while having the highest amount of protein (73.33 ± 4.99 μg/mg fraction). All the extracts and fractions exhibited antioxidant activities, with SF crude extract showing the highest antioxidant activity and phenolic content (121.62 ± 4.86 mg/g extract). Fractionation of the crude extracts resulted in loss of antioxidant activities. There was no positive correlation between phenolic and flavonoid content with α-glucosidase inhibitory activities. However, phenolic content correlated well with antioxidant activities of the crude extracts but not with the fractions.ConclusionsThe antioxidant activities of the fruits of F. deltoidea might be asserted by the phenolic content but other polar plant components were possibly involved in the antidiabetic properties. The study of these compounds having both antihyperglycemic and antioxidant activities may provide a new approach in the treatment of diabetes mellitus.
Food Chemistry | 2014
Ching Ching Lau; Noorlidah Abdullah; Adawiyah Suriza Shuib; Norhaniza Aminudin
Angiotensin I-converting enzyme (ACE) inhibitors derived from foods are valuable auxiliaries to agents such as captopril. Eight highly functional ACE inhibitory peptides from the mushroom, Agaricus bisporus, were identified by LC-MS/MS. Among these peptides, the most potent ACE inhibitory activity was exhibited by AHEPVK, RIGLF and PSSNK with IC₅₀ values of 63, 116 and 129 μM, respectively. These peptides exhibited high ACE inhibitory activity after gastrointestinal digestion. Lineweaver-Burk plots suggested that AHEPVK and RIGLF act as competitive inhibitors against ACE, whereas PSSNK acts as a non-competitive inhibitor. Mushrooms can be a good component of dietary supplement due to their readily available source and, in addition, they rarely cause food allergy. Compared to ACE inhibitory peptides isolated from other edible mushrooms, AHEPVK, RIGLF and PSSNK have lower IC₅₀ values. Therefore, these peptides may serve as an ideal ingredient in the production of antihypertensive supplements.
Journal of Agricultural and Food Chemistry | 2013
Beng Fye Lau; Noorlidah Abdullah; Norhaniza Aminudin
The chemical composition of the tigers milk mushroom (Lignosus rhinocerotis) from different developmental stages, i.e., the fruit body, sclerotium, and mycelium, was investigated for the first time. The fruit body and sclerotium of L. rhinocerotis were rich in carbohydrates and dietary fibers but low in fat. Protein levels in L. rhinocerotis were moderate, and all essential amino acids, except tryptophan, were present. The mycelium contained high levels of potassium, phosphorus, magnesium, riboflavin, and niacin and appreciable amounts of essential fatty acids. The results indicated that the sclerotium of L. rhinocerotis that was used in ethnomedicine was not superior to the fruit body and mycelium with regard to the nutritional content and bioactive constituents. Our findings provide some insights into the selection of appropriate mushroom part(s) of L. rhinocerotis and proper cultivation techniques for the development of new nutraceuticals or dietary supplements.
Journal of Agricultural and Food Chemistry | 2012
Ching-Ching Lau; Noorlidah Abdullah; Adawiyah Suriza Shuib; Norhaniza Aminudin
Mushrooms are high in protein content, which makes them potentially a good source of antihypertensive peptides. Among the mushrooms tested, protein extracts from Pleurotus cystidiosus (E1Pc and E5Pc) and Agaricus bisporus (E1Ab and E3Ab) had high levels of antihypertensive activity. The protein extracts were fractionated by reverse-phase high-performance liquid chromatography (RPHPLC) into six fractions. Fraction 3 from E5Pc (E5PcF3) and fraction 6 from E3Ab (E3AbF6) had the highest antihypertensive activities. SDS-PAGE analysis showed E5PcF3 consisted mainly of low molecular weight proteins, whereas E3AbF6 contained a variety of high to low molecular weight proteins. There were 22 protein clusters detected by SELDI-TOF-MS analysis with five common peaks found in E5PcF3 and E3AbF6, which had m/z values in the range of 3940-11413. This study suggests that the antihypertensive activity in the two mushroom species could be due to proteins with molecular masses ranging from 3 to 10 kDa.
Journal of Ethnopharmacology | 2015
Beng Fye Lau; Noorlidah Abdullah; Norhaniza Aminudin; Hong Boon Lee; Pei Jean Tan
ETHNOPHARMACOLOGICAL RELEVANCE Several members of the genus Lignosus, which are collectively known as cendawan susu rimau (in Malay) or tiger׳s milk mushrooms (TMM), are regarded as important local medicine particularly by the indigenous communities in Malaysia. The mushroom sclerotia are purportedly effective in treating cancer, coughs, asthma, fever, and other ailments. The most commonly encountered Lignosus spp. in Malaysia was authenticated as Lignosus rhinocerotis (Cooke) Ryvarden (synonym: Polyporus rhinocerus), which is also known as hurulingzhi in China and has been used by Chinese physicians to treat liver cancer, gastric ulcers, and chronic hepatitis. In spite of growing interest in the therapeutic potential of TMM, there is no compilation of scientific evidence that supports the ethnomedicinal uses of these mushrooms. Therefore, the present review is intended (i) to provide a comprehensive, up-to-date overview of the ethnomedicinal uses, pharmacological activities, and cultivation of TMM in general and L. rhinocerotis in particular, (ii) to demonstrate how recent scientific findings have validated some of their traditional uses, and (iii) to identify opportunities for future research and areas to prioritize for TMM bioprospecting. MATERIALS AND METHODS A detailed literature search was conducted via library search (books, theses, reports, newspapers, magazines, and conference proceedings) and electronic search (Web of Science, PubMed, and Google Scholar) for articles published in peer-reviewed journals. These sources were scrutinized for information on TMM and specifically for L. rhinocerotis. RESULTS Ethnomycological knowledge about TMM, with an emphasis on cultural associations and use as local medicine, has been comprehensively and systematically compiled for the first time. Some of the reported medicinal properties of TMM have been validated by scientific studies. The anti-tumor, immuno-modulatory, anti-inflammatory, anti-oxidative, anti-microbial, neurite outgrowth stimulation, and other pharmacological activities of L. rhinocerotis sclerotial extracts have been explored. The nature of sclerotial bioactive components, such as proteins, polysaccharides, and/or polysaccharide-protein complexes, has been identified, whereas the low-molecular-weight constituents remain poorly studied. The artificial cultivation of L. rhinocerotis via solid substrate and liquid fermentations successfully yielded fruiting bodies, sclerotium, mycelium, and culture broth that could be exploited as substitutes for the wild resources. The cultivated sclerotium and mycelium were shown to be safe from a toxicological point of view. Other research areas, e.g., chemical studies, genomics, and proteomics, have been employed to gain insights into the medicinal properties of TMM. CONCLUSIONS This review clarified the medicinal properties of TMM as recorded in various ethnomycological records, and it simultaneously highlighted the current efforts to provide scientific evidence by using various in vitro and in vivo models. Thus far, only the anti-tumor and immuno-modulatory effects of L. rhinocerotis sclerotial aqueous extracts have been extensively investigated, and other medicinal properties relevant to their traditional uses, e.g., anti-tussive and anti-pyretic properties, have yet to be validated. Further studies focusing on (i) the isolation and characterization of active components, (ii) the elucidation of their modes of action, and (iii) an evaluation of their safety and efficacy, when compared with the crude aqueous preparations, are warranted to accelerate potential drug discovery from TMM.
Food Chemistry | 2014
Kin Weng Kong; Sarni Mat-Junit; Amin Ismail; Norhaniza Aminudin; Azlina Abdul-Aziz
The polyphenolic profiles and antioxidant activities of the water extracts of Barringtonia racemosa shoots (leaves and stems) were explored. Two methods, freeze drying and air drying, for preparation of the shoots, were also compared. Freeze drying was better as air drying caused 5-41% reduction of polyphenols. Three phenolic acids and three flavonoids were identified, using UHPLC. The descending order of polyphenols in the leaves and stems was gallic acid>ellagic acid>quercetin>protocatechuic acid>rutin>kaempferol. In vitro antioxidant analyses were performed using biological samples. In the LDL oxidation assay, B. racemosa leaf extract (IC50=73.0μg/ml) was better than stem extract (IC50=226μg/ml) at inhibiting the formation of TBARS and lipid hydroperoxides. Similar trends were observed for serum and haemoglobin oxidation. B. racemosa leaf extract was better than its stem extract in delaying the time required to oxidise haemoglobin to methaemoglobin. The high polyphenolic content of B. racemosa shoots could have contributed towards their antioxidative effects.
PLOS ONE | 2014
Beng Fye Lau; Noorlidah Abdullah; Norhaniza Aminudin; Hong Boon Lee; Ken Choy Yap; Vikineswary Sabaratnam
Previous studies on the nutritional and nutraceutical properties of Lignosus rhinocerotis focused mainly on the sclerotium; however, the supply of wild sclerotium is limited. In this investigation, the antioxidant capacity and cytotoxic effect of L. rhinocerotis cultured under different conditions of liquid fermentation (shaken and static) were compared to the sclerotium produced by solid-substrate fermentation. Aqueous methanol extracts of the mycelium (LR-MH, LR-MT) and culture broth (LR-BH, LR-BT) demonstrated either higher or comparable antioxidant capacities to the sclerotium extract (LR-SC) based on their radical scavenging abilities, reducing properties, metal chelating activities, and inhibitory effects on lipid peroxidation. All extracts exerted low cytotoxicity (IC50>200 µg/ml, 72 h) against selected mammalian cell lines. Several low-molecular-weight compounds, including sugars, fatty acids, methyl esters, sterols, amides, amino acids, phenolics, and triterpenoids, were identified using GC-MS and UHPLC-ESI-MS/MS. The presence of proteins (<40 kDa) in the extracts was confirmed by SDS-PAGE and SELDI-TOF-MS. Principal component analysis revealed that the chemical profiles of the mycelial extracts under shaken and static conditions were distinct from those of the sclerotium. Results from bioactivity evaluation and chemical profiling showed that L. rhinocerotis from liquid fermentation merits consideration as an alternative source of functional ingredients and potential substitute for the sclerotium.
Journal of Microbiological Methods | 2011
Beng Fye Lau; Norhaniza Aminudin; Noorlidah Abdullah
Mushrooms are considered as important source of biologically active compounds which include low-molecular-mass protein/peptides (LMMP). In this study, we attempted to profile the LMMP from Lignosus rhinocerus, a wild medicinal mushroom, grown by static cultures (SC) and in stirred tank reactor (STR). Crude water extract (CWE) and protein fractions were profiled using H50 ProteinChip® arrays and SELDI-TOF-MS. Three protein peaks of 5.8, 6.9 and 9.1 kDa were found to be common to spectra of L. rhinocerus CWE from both culture conditions. Partial protein purification has resulted in detection of more peaks in the spectra of protein fractions. For protein fractions of L. rhinocerus cultured in STR, most peaks were observed in the range of 3-8 kDa whereas some peaks with molecular mass up to 14.3 kDa were noted in spectra of protein fractions from SC. Our results have demonstrated the optimization of profiling method using SELDI-TOF-MS for fungal LMMP.
PeerJ | 2016
Kin Weng Kong; Sarni Mat-Junit; Norhaniza Aminudin; Fouad Abdulrahman Hassan; Amin Ismail; Azlina Abdul Aziz
Barringtonia racemosa is a tropical plant with medicinal values. In this study, the ability of the water extracts of the leaf (BLE) and stem (BSE) from the shoots to protect HepG2 cells against oxidative damage was studied. Five major polyphenolic compounds consisting of gallic acid, ellagic acid, protocatechuic acid, quercetin and kaempferol were identified using HPLC-DAD and ESI-MS. Cell viability assay revealed that BLE and BSE were non-cytotoxic (cell viabilities >80%) at concentration less than 250 µg/ml and 500 µg/ml, respectively. BLE and BSE improved cellular antioxidant status measured by FRAP assay and protected HepG2 cells against H2O2-induced cytotoxicity. The extracts also inhibited lipid peroxidation in HepG2 cells as well as the production of reactive oxygen species. BLE and BSE could also suppress the activities of superoxide dismutase and catalase during oxidative stress. The shoots of B. racemosa can be an alternative bioactive ingredient in the prevention of oxidative damage.