Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nori Tolosa de Talamoni is active.

Publication


Featured researches published by Nori Tolosa de Talamoni.


World Journal of Gastroenterology | 2015

Molecular aspects of intestinal calcium absorption

Gabriela Díaz de Barboza; Solange Guizzardi; Nori Tolosa de Talamoni

Intestinal Ca(2+) absorption is a crucial physiological process for maintaining bone mineralization and Ca(2+) homeostasis. It occurs through the transcellular and paracellular pathways. The first route comprises 3 steps: the entrance of Ca(2+) across the brush border membranes (BBM) of enterocytes through epithelial Ca(2+) channels TRPV6, TRPV5, and Cav1.3; Ca(2+) movement from the BBM to the basolateral membranes by binding proteins with high Ca(2+) affinity (such as CB9k); and Ca(2+) extrusion into the blood. Plasma membrane Ca(2+) ATPase (PMCA1b) and sodium calcium exchanger (NCX1) are mainly involved in the exit of Ca(2+) from enterocytes. A novel molecule, the 4.1R protein, seems to be a partner of PMCA1b, since both molecules co-localize and interact. The paracellular pathway consists of Ca(2+) transport through transmembrane proteins of tight junction structures, such as claudins 2, 12, and 15. There is evidence of crosstalk between the transcellular and paracellular pathways in intestinal Ca(2+) transport. When intestinal oxidative stress is triggered, there is a decrease in the expression of several molecules of both pathways that inhibit intestinal Ca(2+) absorption. Normalization of redox status in the intestine with drugs such as quercetin, ursodeoxycholic acid, or melatonin return intestinal Ca(2+) transport to control values. Calcitriol [1,25(OH)₂D₃] is the major controlling hormone of intestinal Ca(2+) transport. It increases the gene and protein expression of most of the molecules involved in both pathways. PTH, thyroid hormones, estrogens, prolactin, growth hormone, and glucocorticoids apparently also regulate Ca(2+) transport by direct action, indirect mechanism mediated by the increase of renal 1,25(OH)₂D₃ production, or both. Different physiological conditions, such as growth, pregnancy, lactation, and aging, adjust intestinal Ca(2+) absorption according to Ca(2+) demands. Better knowledge of the molecular details of intestinal Ca(2+) absorption could lead to the development of nutritional and medical strategies for optimizing the efficiency of intestinal Ca(2+) absorption and preventing osteoporosis and other pathologies related to Ca(2+) metabolism.


Nutrition Research Reviews | 2009

Molecular mechanisms triggered by low-calcium diets.

V. Centeno; Gabriela Díaz de Barboza; A.M. Marchionatti; Valeria Rodríguez; Nori Tolosa de Talamoni

Ca is not only essential for bone mineralisation, but also for regulation of extracellular and intracellular processes. When the Ca2+ intake is low, the efficiency of intestinal Ca2+ absorption and renal Ca2+ reabsorption is increased. This adaptive mechanism involves calcitriol enhancement via parathyroid hormone stimulation. Bone is also highly affected. Low Ca2+ intake is considered a risk factor for osteoporosis. Patients with renal lithiasis may be at higher risk of recurrence of stone formation when they have low Ca2+ intake. The role of dietary Ca2+ on the regulation of lipid metabolism and lipogenic genes in adipocytes might explain an inverse relationship between dairy intake and BMI. Dietary Ca2+ restriction produces impairment of the adipocyte apoptosis and dysregulation of glucocorticosteroid metabolism in the adipose tissue. An inverse relationship between hypertension and a low-Ca2+ diet has been described. Ca2+ facilitates weight loss and stimulates insulin sensitivity, which contributes to the decrease in the blood pressure. There is also evidence that dietary Ca2+ is associated with colorectal cancer. Dietary Ca2+ could alter the ratio of faecal bile acids, reducing the cytotoxicity of faecal water, or it could activate Ca2+-sensing receptors, triggering intracellular signalling pathways. Also it could bind luminal antigens, transporting them into mucosal mononuclear cells as a mechanism of immunosurveillance and promotion of tolerance. Data relative to nutritional Ca2+ and incidences of other human cancers are controversial. Health professionals should be aware of these nutritional complications and reinforce the dairy intakes to ensure the recommended Ca2+ requirements and prevent diseases.


Cancer Investigation | 2012

Molecular Aspects of Vitamin D Anticancer Activity

Gabriela Picotto; Ana C. Liaudat; Luciana Bohl; Nori Tolosa de Talamoni

Environment may influence the development and prevention of cancer. Calcitriol has been associated with calcium homeostasis regulation. Many epidemiological, biochemical, and genetic studies have shown non-classic effects of vitamin D, such as its involvement in the progression of different cancers. Although vitamin D induces cellular arrest, triggers apoptotic pathways, inhibits angiogenesis, and alters cellular adhesion, the precise mechanisms of its action are still not completely established. This article will present a revision about the molecular aspects proposed to be involved in the anticancer action of calcitriol. Adequate levels of vitamin D to prevent cancer development will also be discussed.


The Journal of Steroid Biochemistry and Molecular Biology | 2009

Antiproliferative action of menadione and 1,25(OH)2D3 on breast cancer cells.

A.M. Marchionatti; G. Picotto; Carmen J. Narvaez; JoEllen Welsh; Nori Tolosa de Talamoni

Calcitriol or 1,25(OH)(2)D(3) is a negative growth regulator of MCF-7 breast cancer cells. The growth arrest is due to apoptosis activation, which involves mitochondrial disruption. This effect is blunted in vitamin D resistant cells (MCF-7(DRes) cells). Menadione (MEN), a glutathione (GSH)-depleting compound, may potentiate antitumoral effects of anticancer drugs. The aim of this study was to investigate whether MEN enhances cellular responsiveness of MCF-7 cells to 1,25(OH)(2)D(3). Cells were cultured and treated with different concentrations of 1,25(OH)(2)D(3)+/-MEN or vehicle for 96 h. GSH levels and the activity of antioxidant enzymes were determined by spectrophotometry and ROS production by flow cytometry. Both drugs decreased growth and enhanced ROS in MCF-7 cells, obtaining the maximal effects when 1,25(OH)(2)D(3) was combined with MEN (P<0.01 vs. Control and vs. each compound alone). MCF-7(DRes) cells were not responsive to 1,25(OH)(2)D(3), but the cell proliferation was slightly inhibited by the combined treatment. Calcitriol and MEN separately enhanced antioxidant enzyme activities, but when they were used in combination, the effect was more pronounced (P<0.05 vs. Control and vs. each compound alone). MEN, calcitriol and the combined treatment decreased GSH levels (P<0.05 vs. Control). The data indicate that MEN potentiates the effect of 1,25(OH)(2)D(3) on growth arrest in MCF-7 cells by oxidative stress and increases the activities of antioxidant enzymes, probably as a compensatory mechanism.


Journal of Bone and Mineral Metabolism | 2008

Genotypes and clinical aspects associated with bone mineral density in Argentine postmenopausal women

Adriana Pérez; María Rosa Ulla; Beatriz A. García; María Lavezzo; Eliana Elías; Miriam Binci; María A. Rivoira; V. Centeno; Arturo Alisio; Nori Tolosa de Talamoni

The aim of this study was to determine genotypes and clinical aspects associated with bone mineral density (BMD) in postmenopausal women from Córdoba, Argentina. Polymorphisms were assessed by RFLP-PCR technique using BsmI and FokI for vitamin D receptor gene (VDR) and XbaI and PvuII for estrogen receptor-α gene (ERα) as restrictases. Sixty-eight healthy, 54 osteopenic, and 64 osteoporotic postmenopausal women were recruited. Femoral neck and lumbar spine BMD were inversely correlated with age in the entire analyzed population. Height was lower in osteopenic and osteoporotic women as compared to healthy women (P < 0.05). Weight and body mass index (BMI) were the lowest in osteoporotic women (P < 0.01 versus healthy group). Serum procollagen type I Nterminal propeptide (PINP) was higher in osteoporotic women as compared to the other groups. Distribution of VDR and ERα genotypes was similar in the three groups. Genotype bb (VDR) was associated with low values of lumbar BMD in the healthy group (P < 0.05 versus genotype Bb), and with low values of femoral BMD (P < 0.05 versus genotype BB) in osteoporotic women. BB*Pp interaction was associated with the highest femoral neck BMD (P < 0.05), whereas the bb*xx interaction was associated with the lowest femoral neck BMD in the total population analyzed (P < 0.05). In conclusion, parameters such as age, height, weight, BMI, serum PINP, VDR genotypes, and interactions between VDR and ERá genotypes could be useful to predict a decrease in BMD in Argentine postmenopausal women.


Reproduction | 2008

A mitochondrial mechanism is involved in apoptosis of Robertsonian mouse male germ cells

Valeria Merico; Gabriela Díaz de Barboza; Chiara Vasco; Rubén H. Ponce; Valeria Rodríguez; Silvia Garagna; Nori Tolosa de Talamoni

The aim of this study was to determine whether the intrinsic mechanism of apoptosis is involved in the death of germ cells in Robertsonian (Rb) heterozygous adult male mice. Testes from 5-month-old Rb heterozygous CD1 x Milano II mice were obtained and compared with those from homozygous CD1 (2n=40) and Milano II (2n=24) mice. For histological evaluation of apoptosis, TUNEL labelling and immunohistochemistry were used to localise Bax and cytochrome c. Expression of calbindin D(28k) (CB), an anti-apoptotic molecule, was also analysed by immunohistochemistry and immunoblotting. Testicular ultrastructure was visualised by electron microscopy. Morphology and cell associations were abnormal in the Rb heterozygous seminiferous epithelium. An intense apoptotic process was observed in tubules at stage XII, mainly in metaphase spermatocytes. Metaphase spermatocytes also showed Bax and cytochrome c redistributions. Mitochondria relocated close to the paranuclear region of spermatocytes. CB was mainly expressed in metaphase spermatocytes, but also in pachytene spermatocytes, spermatids and Sertoli cells at stage XII. The co-localisation of CB and TUNEL labelling was very limited. Sixty per cent of metaphase spermatocytes were apoptotic and calbindin negative, while 40% were calbindin positive without signs of apoptosis. Ten per cent of the Bax- and cytochrome c-positive cells were also calbindin positive. These data suggest that apoptosis of the germ cells in heterozygous mice occurs, at least in part, through a mitochondrial-dependent mechanism. Calbindin overexpression might prevent or reduce the apoptosis of germ cells caused by Rb heterozygosity, which could partially explain the subfertility of these mice.


Journal of Pediatric Endocrinology and Metabolism | 2010

Serum levels of adiponectin and leptin in children born small for gestational age: relation to insulin sensitivity parameters.

Mirta Miras; Mariana Ochetti; Silvia Martín; Liliana Silvano; Gabriela Sobrero; Laura Cecilia Castro; Mariana Onassis; Nori Tolosa de Talamoni; Adriana Pérez; Gabriela Picotto; Gabriela Díaz de Barboza; Liliana Muñoz

ABSTRACT Children born small for gestational age (SGA) are prone to developing obesity, insulin resistance and type 2 diabetes. Adiponectin and leptin are adipocytokines associated with insulin sensitivity parameters. We aimed to relate serum adiponectin and leptin levels with insulin sensitivity parameters in prepuberal SGA children with and without catch-up growth (SGA+CUG; SGA-CUG, respectively) and to analyze the usefulness of these adipocytokines as early markers of insulin resistance. We analysed adiponectin, proinsulin, leptin, growth factors, insulin, HOMA IR and HOMA βcell in 23 SGA+CUG, 26 SGA-CUG children compared with 48 prepuberal appropiate for gestational age (AGA). SGA children had adiponectin levels comparable to AGA children. Leptin levels were different between sexes, showed to be higher in SGA+CUG group (p=0.040) and these were significantly correlated with insulin sensitivity parameters. These results suggest leptin resistance as an adaptive mechanism to increase energy balance, but an altered functional response of adipocytes cannot be discarded.


Journal of Nutritional Biochemistry | 2003

Effects of a single dose of menadione on the intestinal calcium absorption and associated variables

A.M. Marchionatti; Gabriela Díaz de Barboza; V. Centeno; Arturo Alisio; Nori Tolosa de Talamoni

The effect of a single large dose of menadione on intestinal calcium absorption and associated variables was investigated in chicks fed a normal diet. The data show that 2.5 micro mol of menadione/kg of b.w. causes inhibition of calcium transfer from lumen-to-blood within 30 min. This effect seems to be related to oxidative stress provoked by menadione as judged by glutathione depletion and an increment in the total carbonyl group content produced at the same time. Two enzymes presumably involved in calcium transcellular movement, such as alkaline phosphatase, located in the brush border membrane, and Ca(2+)- pump ATPase, which sits in the basolateral membrane, were also inhibited. The enzyme inhibition could be due to alterations caused by the appearance of free hydroxyl groups, which are triggered by glutathione depletion. Addition of glutathione monoester to the duodenal loop caused reversion of the menadione effect on both intestinal calcium absorption and alkaline phosphatase activity. In conclusion, menadione shifts the balance of oxidative and reductive processes in the enterocyte towards oxidation causing deleterious effects on intestinal Ca(2+) absorption and associated variables, which could be prevented by administration of oral glutathione monoester.


Archives of Biochemistry and Biophysics | 2013

Ursodeoxycholic and deoxycholic acids: A good and a bad bile acid for intestinal calcium absorption

Valeria Rodríguez; M.A. Rivoira; A.M. Marchionatti; Adriana Pérez; Nori Tolosa de Talamoni

The aim of this study was to investigate the effect of ursodeoxycholic acid (UDCA) on intestinal Ca(2+) absorption and to find out whether the inhibition of this process caused by NaDOC could be prevented by UDCA. Chicks were employed and divided into four groups: (a) controls, (b) treated with 10mM NaDOC, (c) treated with 60 μg UDCA/100g of b.w., and (d) treated with 10mM NaDOC and 60 μg UDCA/100g of b.w. UDCA enhanced intestinal Ca(2+) absorption, which was time and dose-dependent. UDCA avoided the inhibition of intestinal Ca(2+) absorption caused by NaDOC. Both bile acids altered protein and gene expression of molecules involved in the transcellular pathway of intestinal Ca(2+) absorption, but in the opposite way. UDCA aborted the oxidative stress produced by NaDOC in the intestine. UDCA and UDCA plus NaDOC increased vitamin D receptor protein expression. In conclusion, UDCA is a beneficial bile acid for intestinal Ca(2+) absorption. Contrarily, NaDOC inhibits the intestinal cation absorption through triggering oxidative stress. The use of UDCA in patients with cholestasis would be benefited because of the protective effect on the intestinal Ca(2+) absorption, avoiding the inhibition caused by hydrophobic bile acids and neutralizing the oxidative stress.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2001

DL-Buthionine-S,R-sulfoximine affects intestinal alkaline phosphatase activity.

A.M. Marchionatti; Arturo Alisio; Gabriela Díaz de Barboza; Vanessa Baudino; Nori Tolosa de Talamoni

The susceptibility of intestinal alkaline phosphatase to DL-buthionine-S,R-sulfoximine was investigated in chicks fed a commercial diet. The results show that DL-buthionine-S,R-sulfoximine produced inhibition of intestinal alkaline phosphatase activity. This effect showed dose- and time-dependency and it was caused by either in vivo DL-buthionine-S,R- sulfoximine administration or in vitro DL-buthionine-S,R-sulfoximine incubation with villus tip enterocytes. DL-Buthionine-S,R-sulfoximine did not act directly on intestinal alkaline phosphatase but it provoked glutathione depletion which led to changes in the redox state of the enterocyte as shown by the production of free hydroxyl radicals and an incremental increase in the carbonyl content of proteins. The reversibility of the buthionine sulfoximine effect on intestinal alkaline phosphatase was proved by addition of glutathione monoester to the duodenal loop.

Collaboration


Dive into the Nori Tolosa de Talamoni's collaboration.

Top Co-Authors

Avatar

Adriana Pérez

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.M. Marchionatti

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Valeria Rodríguez

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

V. Centeno

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Arturo Alisio

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

M.A. Rivoira

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Gabriela Picotto

Facultad de Ciencias Médicas

View shared research outputs
Top Co-Authors

Avatar

Luciana Bohl

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

María Peralta López

National University of Cordoba

View shared research outputs
Researchain Logo
Decentralizing Knowledge