Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noriaki Sasai is active.

Publication


Featured researches published by Noriaki Sasai.


Cell | 2012

Gene Regulatory Logic for Reading the Sonic Hedgehog Signaling Gradient in the Vertebrate Neural Tube

Nikolaos Balaskas; Ana Carolina Prado Ribeiro; Jasmina Panovska; Eric Dessaud; Noriaki Sasai; Karen M. Page; James Briscoe; Vanessa Ribes

Summary Secreted signals, known as morphogens, provide the positional information that organizes gene expression and cellular differentiation in many developing tissues. In the vertebrate neural tube, Sonic Hedgehog (Shh) acts as a morphogen to control the pattern of neuronal subtype specification. Using an in vivo reporter of Shh signaling, mouse genetics, and systems modeling, we show that a spatially and temporally changing gradient of Shh signaling is interpreted by the regulatory logic of a downstream transcriptional network. The design of the network, which links three transcription factors to Shh signaling, is responsible for differential spatial and temporal gene expression. In addition, the network renders cells insensitive to fluctuations in signaling and confers hysteresis—memory of the signal. Our findings reveal that morphogen interpretation is an emergent property of the architecture of a transcriptional network that provides robustness and reliability to tissue patterning.


Development | 2000

Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm

Masashi Kishi; Kenji Mizuseki; Noriaki Sasai; H. Yamazaki; Kohei Shiota; Shigetada Nakanishi; Yoshiki Sasai

From early stages of development, Sox2-class transcription factors (Sox1, Sox2 and Sox3) are expressed in neural tissues and sensory epithelia. In this report, we show that Sox2 function is required for neural differentiation of early Xenopus ectoderm. Microinjection of dominant-negative forms of Sox2 (dnSox2) mRNA inhibits neural differentiation of animal caps caused by attenuation of BMP signals. Expression of dnSox2 in developing embryos suppresses expression of N-CAM and regional neural markers. We have analyzed temporal requirement of Sox2-mediated signaling by using an inducible dnSox2 construct fused to the ligand-binding domain of the glucocorticoid receptor. Attenuation of Sox2 function both from the late blastula stage and from the late gastrula stage onwards causes an inhibition of neural differentiation in animal caps and in whole embryos. Additionally, dnSox2-injected cells that fail to differentiate into neural tissues are not able to adopt epidermal cell fate. These data suggest that Sox2-class genes are essential for early neuroectoderm cells to consolidate their neural identity during secondary steps of neural differentiation.


Development | 2005

Neural crest determination by co-activation of Pax3 and Zic1 genes in Xenopus ectoderm.

Takahiko Sato; Noriaki Sasai; Yoshiki Sasai

A number of regulatory genes have been implicated in neural crest development. However, the molecular mechanism of how neural crest determination is initiated in the exact ectodermal location still remains elusive. Here, we show that the cooperative function of Pax3 and Zic1 determines the neural crest fate in the amphibian ectoderm. Pax3 and Zic1 are expressed in an overlapping manner in the presumptive neural crest area of the Xenopus gastrula, even prior to the onset of the expression of the early bona fide neural crest marker genes Foxd3 and Slug. Misexpression of both Pax3 and Zic1 together efficiently induces ectopic neural crest differentiation in the ventral ectoderm, whereas overexpression of either one of them only expands the expression of neural crest markers within the dorsolateral ectoderm. The induction of neural crest differentiation by Pax3 and Zic1 requires Wnt signaling. Loss-of-function studies in vivo and in the animal cap show that co-presence of Pax3 and Zic1 is essential for the initiation of neural crest differentiation. Thus, co-activation of Pax3 and Zic1, in concert with Wnt, plays a decisive role for early neural crest determination in the correct place of the Xenopus ectoderm.


Nature | 2011

Intrinsic transition of embryonic stem-cell differentiation into neural progenitors

Daisuke Kamiya; Satoe Banno; Noriaki Sasai; Masatoshi Ohgushi; Hidehiko Inomata; Kiichi Watanabe; Masako Kawada; Rieko Yakura; Hiroshi Kiyonari; Kazuki Nakao; Lars Martin Jakt; Shin-Ichi Nishikawa; Yoshiki Sasai

The neural fate is generally considered to be the intrinsic direction of embryonic stem (ES) cell differentiation. However, little is known about the intracellular mechanism that leads undifferentiated cells to adopt the neural fate in the absence of extrinsic inductive signals. Here we show that the zinc-finger nuclear protein Zfp521 is essential and sufficient for driving the intrinsic neural differentiation of mouse ES cells. In the absence of the neural differentiation inhibitor BMP4, strong Zfp521 expression is intrinsically induced in differentiating ES cells. Forced expression of Zfp521 enables the neural conversion of ES cells even in the presence of BMP4. Conversely, in differentiation culture, Zfp521-depleted ES cells do not undergo neural conversion but tend to halt at the epiblast state. Zfp521 directly activates early neural genes by working with the co-activator p300. Thus, the transition of ES cell differentiation from the epiblast state into neuroectodermal progenitors specifically depends on the cell-intrinsic expression and activator function of Zfp521.


PLOS Biology | 2010

Dynamic assignment and maintenance of positional identity in the ventral neural tube by the morphogen sonic hedgehog.

Eric Dessaud; Vanessa Ribes; Nikolaos Balaskas; Lin Lin Yang; Alessandra Pierani; Anna Kicheva; Bennett G. Novitch; James Briscoe; Noriaki Sasai

During development of the vertebrate neural tube, cells acquire their positional identity from not only the spatial level of the Sonic Hedgehog signaling gradient, but also the temporal duration.


Journal of Biological Chemistry | 1999

The Mammalian HSF4 Gene Generates Both an Activator and a Repressor of Heat Shock Genes by Alternative Splicing

Masako Tanabe; Noriaki Sasai; Kazuhiro Nagata; Xiao-Dong Liu; Phillip Liu; Dennis J. Thiele; Akira Nakai

The expression of heat shock genes is controlled at the level of transcription by members of the heat shock transcription factor family in vertebrates. HSF4 is a mammalian factor characterized by its lack of a suppression domain that modulates formation of DNA-binding homotrimer. Here, we have determined the exon structure of the human HSF4 gene and identified a major new isoform, HSF4b, derived by alternative RNA splicing events, in addition to a previously reported HSF4a isoform. In mouse tissues HSF4b mRNA was more abundant than HSF4a as examined by reverse transcription-polymerase chain reaction, and its protein was detected in the brain and lung. Although both mouse HSF4a and HSF4b form trimers in the absence of stress, these two isoforms exhibit different transcriptional activity; HSF4a acts as an inhibitor of the constitutive expression of heat shock genes, and hHSF4b acts as a transcriptional activator. Furthermore HSF4b but not HSF4a complements the viability defect of yeast cells lacking HSF. Moreover, heat shock and other stresses stimulate transcription of target genes by HSF4b in both yeast and mammalian cells. These results suggest that differential splicing of HSF4 mRNA gives rise to both an inhibitor and activator of tissue-specific heat shock gene expression.


PLOS Biology | 2011

Sonic Hedgehog Dependent Phosphorylation by CK1α and GRK2 Is Required for Ciliary Accumulation and Activation of Smoothened

Yongbin Chen; Noriaki Sasai; Guoqiang Ma; Tao Yue; Jianhang Jia; James Briscoe; Jin Jiang

Hedgehog (Hh) signaling regulates embryonic development and adult tissue homeostasis through the GPCR-like protein Smoothened (Smo), but how vertebrate Smo is activated remains poorly understood. In Drosophila, Hh dependent phosphorylation activates Smo. Whether this is also the case in vertebrates is unclear, owing to the marked sequence divergence between vertebrate and Drosophila Smo (dSmo) and the involvement of primary cilia in vertebrate Hh signaling. Here we demonstrate that mammalian Smo (mSmo) is activated through multi-site phosphorylation of its carboxyl-terminal tail by CK1α and GRK2. Phosphorylation of mSmo induces its active conformation and simultaneously promotes its ciliary accumulation. We demonstrate that graded Hh signals induce increasing levels of mSmo phosphorylation that fine-tune its ciliary localization, conformation, and activity. We show that mSmo phosphorylation is induced by its agonists and oncogenic mutations but is blocked by its antagonist cyclopamine, and efficient mSmo phosphorylation depends on the kinesin-II ciliary motor. Furthermore, we provide evidence that Hh signaling recruits CK1α to initiate mSmo phosphorylation, and phosphorylation further increases the binding of CK1α and GRK2 to mSmo, forming a positive feedback loop that amplifies and/or sustains mSmo phosphorylation. Hence, despite divergence in their primary sequences and their subcellular trafficking, mSmo and dSmo employ analogous mechanisms for their activation.


Genes & Development | 2010

Distinct Sonic Hedgehog signaling dynamics specify floor plate and ventral neuronal progenitors in the vertebrate neural tube

Vanessa Ribes; Nikolaos Balaskas; Noriaki Sasai; Catarina Cruz; Eric Dessaud; Jordi Cayuso; Samuel Tozer; Lin Lin Yang; Ben Novitch; Elisa Martí; James Briscoe

The secreted ligand Sonic Hedgehog (Shh) organizes the pattern of cellular differentiation in the ventral neural tube. For the five neuronal subtypes, increasing levels and durations of Shh signaling direct progenitors to progressively more ventral identities. Here we demonstrate that this mode of action is not applicable to the generation of the most ventral cell type, the nonneuronal floor plate (FP). In chick and mouse embryos, FP specification involves a biphasic response to Shh signaling that controls the dynamic expression of key transcription factors. During gastrulation and early somitogenesis, FP induction depends on high levels of Shh signaling. Subsequently, however, prospective FP cells become refractory to Shh signaling, and this is a prerequisite for the elaboration of their identity. This prompts a revision to the model of graded Shh signaling in the neural tube, and provides insight into how the dynamics of morphogen signaling are deployed to extend the patterning capacity of a single ligand. In addition, we provide evidence supporting a common scheme for FP specification by Shh signaling that reconciles mechanisms of FP development in teleosts and amniotes.


Development | 2006

Essential pro-Bmp roles of crossveinless 2 in mouse organogenesis

Makoto Ikeya; Masako Kawada; Hiroshi Kiyonari; Noriaki Sasai; Kazuki Nakao; Yasuhide Furuta; Yoshiki Sasai

We here report essential roles of the Bmp-binding protein crossveinless 2 (Cv2; Bmper) in mouse organogenesis. In the null Cv2 mutant mouse, gastrulation occurs normally, but a number of defects are found in Cv2-expressing tissues such as the skeleton. Cartilage differentiation by Bmp4 treatment is reduced in cultured Cv2-/- fibroblasts. Moreover, the defects in the vertebral column and eyes of the Cv2-/- mouse are substantially enhanced by deleting one copy of the Bmp4 gene, suggesting a pro-Bmp role of Cv2 in the development of these organs. In addition, the Cv2-/- mutant exhibits substantial defects in Bmp-dependent processes of internal organ formation, such as nephron generation in the kidney. This kidney hypoplasia is synergistically enhanced by the additional deletion of Kcp (Crim2) which encodes a pro-Bmp protein structurally related to Cv2. This study demonstrates essential pro-Bmp functions of Cv2 for locally restricted signal enhancement in multiple aspects of mammalian organogenesis.


Molecular Biology of the Cell | 2008

Apical Accumulation of Rho in the Neural Plate Is Important for Neural Plate Cell Shape Change and Neural Tube Formation

Nagatoki Kinoshita; Noriaki Sasai; Kazuyo Misaki; Shigenobu Yonemura

Although Rho-GTPases are well-known regulators of cytoskeletal reorganization, their in vivo distribution and physiological functions have remained elusive. In this study, we found marked apical accumulation of Rho in developing chick embryos undergoing folding of the neural plate during neural tube formation, with similar accumulation of activated myosin II. The timing of accumulation and biochemical activation of both Rho and myosin II was coincident with the dynamics of neural tube formation. Inhibition of Rho disrupted its apical accumulation and led to defects in neural tube formation, with abnormal morphology of the neural plate. Continuous activation of Rho also altered neural tube formation. These results indicate that correct spatiotemporal regulation of Rho is essential for neural tube morphogenesis. Furthermore, we found that a key morphogenetic signaling pathway, the Wnt/PCP pathway, was implicated in the apical accumulation of Rho and regulation of cell shape in the neural plate, suggesting that this signal may be the spatiotemporal regulator of Rho in neural tube formation.

Collaboration


Dive into the Noriaki Sasai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shin-ichi Ohnuma

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Mami Matsuo-Takasaki

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kiichi Watanabe

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yasuhide Furuta

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge