Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noriaki Shimada is active.

Publication


Featured researches published by Noriaki Shimada.


Pharmacology & Therapeutics | 1997

PREDICTION OF IN VIVO DRUG METABOLISM IN THE HUMAN LIVER FROM IN VITRO METABOLISM DATA

Takafumi Iwatsubo; Noriko Hirota; Tsuyoshi Ooie; Hiroshi Suzuki; Noriaki Shimada; Kan Chiba; Takashi Ishizaki; Carol E. Green; Charles A. Tyson; Yuichi Sugiyama

As a new approach to predicting in vivo drug metabolism in humans, scaling of in vivo metabolic clearance from in vitro data obtained using human liver microsomes or hepatocytes is described in this review, based on the large number of literature data. Successful predictions were obtained for verapamil, loxtidine (lavoltidine), diazepam, lidocaine, phenacetin and some other compounds where CLint,in vitro is comparable with CLint,in vivo. On the other hand, for some metabolic reactions, differences in CLint,in vitro and CLint,in vivo greater than 5-fold were observed. The following factors are considered to be the cause of the differences: (1) metabolism in tissues other than liver, (2) incorrect assumption of rapid equilibrium of drugs between blood and hepatocytes, (3) presence of active transport through the sinusoidal membrane, and (4) interindividual variability. Furthermore, the possibility of predicting in vivo drug metabolic clearance from results obtained using a recombinant system of human P450 isozyme was described for a model compound, YM796, where the predicted metabolic clearances obtained from the recombinant system, taking account of the content of the P450 isozyme CYP3A4 in the human microsomes, were comparable with the observed clearances using human liver microsomes containing different amounts of CYP3A4. Even in the case where the first-pass metabolism exhibits nonlinearity, it appears to be possible to predict in vivo metabolic clearance from in vitro metabolic data.


European Journal of Clinical Pharmacology | 2000

Inhibition of human cytochrome P450 enzymes by 1,4-dihydropyridine calcium antagonists: prediction of in vivo drug-drug interactions.

Miki Nakajima; Noriaki Shimada; Hiroshi Yamazaki; Tsuyoshi Yokoi

AbstractObjective: 1,4-Dihydropyridine calcium antagonists such as nifedipine are potent vasodilators. It is now commonly agreed that the oxidation of 1,4-dihydropyridine into pyridine, which is one of the main metabolic pathways, is catalysed by the cytochrome P450 (CYP) 3A4 isoform. In the present study, the inhibitory effects of 13 kinds of 1,4-dihydropyridine calcium antagonists clinically used in Japan on human CYP-isoform-dependent reactions were investigated to predict the drug interactions using microsomes from human B-lymphoblast cells expressing CYP. Results: The specific activities for human CYP isoforms included 7-ethoxyresorfin O-deethylation (CYP1A1), phenacetin O-deethylation (CYP1A2), coumarin 7-hydroxylation (CYP2A6), 7-benzyloxyresorufin O-dealkylation (CYP2B6), S-warfarin 7-hydroxylation (CYP2C9), S-mephenytoin 4′-hydroxylaion (CYP2C19), bufuralol 1′-hydroxylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1), and testosterone 6β-hydroxylation (CYP3A4). Benidipine and amlodipine competitively inhibited the CYP1A1 activity. Nifedipine, nisoldipine and aranidipine competitively inhibited the CYP1A2 activity. No 1,4-dihydropyridie calcium antagonists used in this study inhibited the CYP2A6 activity. Barnidipine and amlodipine inhibited the CYP2B6 activity. Nicardipine, benidipine, manidipine and barnidipine competitively inhibited the CYP2C9 and CYP2D6 activities. Inhibition extent of the CYP2E1 activity by nifedipine and aranidipine were weak. Nicardipine, benidipine and barnidipine inhibited the CYP2C19 and CYP3A4 activities. Among the human CYP isoforms investigated, the inhibitory effects of 1,4-dihydropyridine calcium antagonists were potent on human CYP1A2, CYP2B6, CYP2C9, CYP2C19 and CYP2D6 as well as CYP3A4. Furthermore, the isoform selectivity of inhibition by 1,4-dihydropyridine calcium antagonists was clarified. Conclusions: In consideration of the Ki values obtained in the in vitro inhibition study and the concentration of 1,4-dihydropyridine calcium antagonists in human liver, the possibility of in vivo drug interactions of nicardipine and other drugs which are mainly metabolised by CYP2C9 and/or CYP3A4 was suggested. The inhibition of human CYP isoforms by 1,4-dihydropyridine calcium antagonists except nicardipine might be clinically insignificant.


Pharmaceutical Research | 2000

Prediction of in vivo interaction between triazolam and erythromycin based on in vitro studies using human liver microsomes and recombinant human CYP3A4.

Shin-ichi Kanamitsu; Kiyomi Ito; Carol E. Green; Charles A. Tyson; Noriaki Shimada; Yuichi Sugiyama

AbstractPurpose. To quantitatively predict the in vivo interaction betweentriazolam and erythromycin, which involves mechanism-basedinhibition of CYP3A4, from in vitro studies using human liver microsomes(HLM) and recombinant human CYP3A4 (REC). Methods. HLM or REC was preincubated with erythromycin in thepresence of NADPH and then triazolam was added. α- and 4-hydroxy(OH) triazolam were quantified after a 3 min incubation and the kineticparameters for enzyme inactivation (kinact and K′app) were obtained.Drug-drug interaction in vivo was predicted based on aphysiologically-based pharmacokinetic (PBPK) model, using triazolam anderythromycin pharmacokinetic parameters obtained from the literature and kineticparameters for the enzyme inactivation obtained in the in vitro studies. Results. Whichever enzyme was used, triazolam metabolism was notinhibited without preincubation, even if the erythromycin concentrationwas increased. The degree of inhibition depended on preincubationtime and erythromycin concentration. The values obtained for kinactand K′app were 0.062 min−1 and 15.9 μM (α-OH, HLM), 0.055 min−1and 17.4 μM (4-OH, HLM), 0.173 min−1 and 19.1 μM (α-OH, REC),and 0.097 min−1 and 18.9 μM (4-OH, REC). Based on the kineticparameters obtained using HLM and REC, the AUCpo of triazolamwas predicted to increase 2.0- and 2.6-fold, respectively, followingoral administration of erythromycin (333 mg t.i.d. for 3 days), whichagreed well with the reported data. Conclusions. In vivo interaction between triazolam and erythromycinwas successfully predicted from in vitro data based on a PBPK modelinvolving a mechanism-based inhibition of CYP3A4.


Life Sciences | 2000

Identification of human cytochrome P450 isoforms involved in the 7-hydroxylation of chlorpromazine by human liver microsomes.

Kazuyoshi Yoshii; Kaoru Kobayashi; Mihoko Tsumuji; Masayoshi Tani; Noriaki Shimada; Kan Chiba

Studies to identify the cytochrome P450 (CYP) isoform(s) involved in chlorpromazine 7-hydroxylation were performed using human liver microsomes and cDNA-expressed human CYPs. The kinetics of chlorpromazine 7-hydroxylation in human liver microsomes showed a simple Michaelis-Menten behavior. The apparent Km and Vmax values were 3.4+/-1.0 microM and 200.5+/-83.7 pmol/min/mg, respectively. The chlorpromazine 7-hydroxylase activity in human liver microsomes showed good correlations with desipramine 2-hydroxylase activity (r = 0.763, p < 0.05), a marker activity for CYP2D6, and phenacetin O-deethylase activity (r = 0.638, p < 0.05), a marker activity for CYP1A2. Quinidine (an inhibitor of CYP2D6) completely inhibited while alpha-naphthoflavone (an inhibitor of CYP1A2) marginally inhibited the chlorpromazine 7-hydroxylase activity in a human liver microsomal sample showing high CYP2D6 activity. On the other hand, alpha-naphthoflavone inhibited the chlorpromazine 7-hydroxylase activity to 55-65% of control in a human liver microsomal sample showing low CYP2D6 activity. Among eleven cDNA-expressed CYPs studied, CYP2D6 and CYP1A2 exhibited significant activity for the chlorpromazine 7-hydroxylation. The Km values for the chlorpromazine 7-hydroxylation of both cDNA-expressed CYP2D6 and CYP1A2 were in agreement with the Km values of human liver microsomes. These results suggest that chlorpromazine 7-hydroxylation is catalyzed mainly by CYP2D6 and partially by CYP1A2.


Xenobiotica | 2000

Characterization of cytochrome P450 enzymes involved in drug oxidations in mouse intestinal microsomes.

C. Emoto; Hiroshi Yamazaki; S. Yamasaki; Noriaki Shimada; Miki Nakajima; Tsuyoshi Yokoi

1. Cytochrome P450 (P450, CYP) enzymes involved in drug oxidations in mouse intestines were characterized for their role in the first-pass metabolism of xenobiotics. 2. Preparation of mouse intestinal microsomes using a buffer containing glycerol and protease inhibitors including (p-amidinophenyl) methanesulphonyl fluoride, EDTA, soybean trypsin inhibitor, aprotinin, bestatin and leupeptine gave the highest testosterone 6β-hydroxylase activity among several preparation buffers tested in this study. Testosterone 6β-hydroxylase activity catalysed by mouse intestinal microsomes subjected to freezing and thawing was lower than that catalysed by unfrozen intestinal microsomes. 3. Low but significant catalytic activities of nifedipine oxidation, midazolam 1′ - and 4-hydroxylation, chlorzoxazone 6-hydroxylation, bufuralol 1′ - and 6-hydroxylations and tolbutamide methylhydroxylation were observed in mouse intestinal microsomes. Testosterone 6β-hydroxylation, chlorzoxazone 6-hydroxylation, and bufuralol 1′ - and 6-hydroxylations were inhibited by ketoconazole, diethyldithiocarbamate and quinine respectively. 4. Immunoblot analysis using anti-rat CYP3A antibodies demonstrated two immunoreactive bands showing similar migration in mouse intestinal and hepatic microsomes, although studies using anti-CYP1A, anti-CYP2C, anti-CYP2D and anti-CYP2E1 antibodies did not detect any band in mouse intestinal microsomes. 5. The results suggest that mouse intestinal microsomes should be prepared with glycerol and several protease inhibitors and that Cyp3a enzymes probably play an important role in drug oxidations catalysed by mouse intestine.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2000

Bioactivation of diesel exhaust particle extracts and their major nitrated polycyclic aromatic hydrocarbon components, 1-nitropyrene and dinitropyrenes, by human cytochromes P450 1A1, 1A2, and 1B1.

Hiroshi Yamazaki; Naoya Hatanaka; Ryoichi Kizu; Kazuichi Hayakawa; Noriaki Shimada; F. Peter Guengerich; Miki Nakajima; Tsuyoshi Yokoi

The genotoxicities of four samples of diesel exhaust particle (DEP) extracts (DEPE) and nine nitroarenes found in DEPE were investigated after activation catalyzed by human cytochrome P450 (P450) family 1 enzymes co-expressed with NADPH-cytochrome P450 reductase (NPR) in Escherichia coli membranes. The DEPE samples induced umu gene expression in Salmonella typhimurium TA1535/pSK1002 without any P450 system and were further activated by human P450 1B1/NPR membranes. Moderate activation of the DEPE sample by P450 1A2/NPR membranes was also observed, but not by either P450 1A1/NPR or NPR membranes. 1-Nitropyrene (1-NP) was strongly activated by human P450 1B1/NPR membranes. 1,8-Dinitropyrene (1,8-DNP) was most highly activated by P450 1A1 and 1B1 systems for the three DNPs tested. In contrast, 1, 3-DNP was inactivated by P450 1A1/NPR, 1A2/NPR, and 1B1/NPR systems and slightly activated by NPR membranes. 2-Nitrofluoranthene (2-NF) and 3-nitrofluoranthene (3-NF) showed activities similar to 1-NP after bioactivation by P450 1B1/NPR membranes. However, the genotoxicities of 6-nitrochrysene, 7-nitrobenz[a]anthracene, and 6-nitrobenzo[a]pyrene were all weak in the present assay system. Apparent genotoxic activities of DEPE were very low compared with standard nitroarenes in the presence of P450s, possibly because unknown component(s) of DEPE had inhibitory effects on the bioactivation of 1-NP and 1,8-DNP catalyzed by human P450 1B1. These results suggest that environmental chemicals existing in airborne DEP, in addition to 1-NP, 1,6-DNP, 1,8-DNP, 2-NF, and 3-NF, can be activated by human P450 1B1. Biological actions of air pollutants such as nitroarenes to human extrahepatic tissues may be of concern in tissues in which P450 1B1 is expressed.


Xenobiotica | 2001

Cooperativity of α-naphthoflavone in cytochrome P450 3A-dependent drug oxidation activities in hepatic and intestinal microsomes from mouse and human

C. Emoto; Hiroshi Yamazaki; H. Iketaki; S. Yamasaki; Tetsuo Satoh; R. Shimizu; S. Suzuki; Noriaki Shimada; Miki Nakajima; Tsuyoshi Yokoi

1. The effects of several CYP3A substrates (α-naphthoflavone (αNF), terfenadine, midazolam, erythromycin) on nifedipine oxidation and testosterone 6-β-hydroxylation activities were investigated in hepatic and intestinal microsomes from mouse and human. 2. αNF (10 μM) and terfenadine (100 μM) inhibited nifedipine oxidation activities (at substrate concentration of 100 μM) in mouse hepatic microsomes to ∼50%, but not in mouse intestinal microsomes. αNF (30 μM) stimulated nifedipine oxidation activities in mouse and human intestinal microsomes and in human hepatic microsomes to ∼1.3-1.8-fold. Inhibitory potencies (50% inhibition concentration, IC50) of midazolam and erythromycin for nifedipine oxidations were calculated to be ∼90 μM in human intestinal microsomes. In contrast, testosterone (100 μM) stimulated the nifedipine oxidation activities ∼1.5-fold in hepatic and intestinal microsomes from mouse and human. 3. αNF showed different effects on the kinetic parameters including the Hill coefficients of nifedipine oxidation and testosterone 6-β-hydroxylation catalysed by hepatic and intestinal microsomes from mouse and human. Cooperativity in nifedipine oxidation was increased by the addition of αNF to pooled human hepatic microsomes, but little effects of αNF could be observed in individual human intestinal microsomes. 4. These results suggest that CYP3A enzymes in liver and intestine might have different characteristics and that observations from hepatic microsomes should not be directly applicable to intestine metabolism in some cases. Studies of drug-drug interactions of CYP3A substrates are recommended to be performed using intestinal samples.


Xenobiotica | 1993

Changes in the amounts of cytochromes P450 in rat hepatic microsomes produced by cyclosporin A

Isogai M; Noriaki Shimada; Tetsuya Kamataki; Susumu Imaoka; Yoshihiko Funae

1. The effect of cyclosporin A, an immunosuppressive drug, on the levels of individual cytochromes P450 of rat liver was studied by immunoblotting with specific antibodies. Changes in the metabolic activities of the microsomal enzymes were similarly studied. 2. Total P450 was decreased by treatment with cyclosporin A for 17 days. NADPH-P450 reductase activity was also decreased by treatment with cyclosporin A for 10 days and decreased further after 17 days. 3. Cytochromes 2B2 and 2C6 concentrations were decreased by treatment with cyclosporin A for 17 and 10 days, respectively. Administration of cyclosporin A for 17 days also decreased the levels of the male specific cytochromes 2C11 and 3A2, and consequently decreased testosterone 2 alpha-, 16 alpha-, 2 beta- and 6 beta-hydroxylation activities. Shorter periods (7 and 10 days) of cyclosporin A treatment decreased the level of cytochrome 3A2, which metabolizes cyclosporin A. In contrast, the level of cytochrome 2C13 was unchanged.


Xenobiotica | 2000

Use of everted sacs of mouse small intestine as enzyme sources for the study of drug oxidation activities in vitro

C. Emoto; Hiroshi Yamazaki; S. Yamasaki; Noriaki Shimada; Miki Nakajima; Tsuyoshi Yokoi

1. The use of everted sacs of the small intestine as an enzyme source for the study of the first-pass metabolism of xenobiotics by cytochrome P450s (P450, CYP) is described. Several drug oxidation activities for testosterone, chlorzoxazone, tolbutamide, bufuralol and warfarin were observed when everted sacs (1-cm segment) from different parts of mouse small intestine were incubated with an NADPH-generating system and each substrate. 2. Most of the drug hydroxylase activities resided in the upper part of mouse small intestine and these activities were much higher than those of intestinal microsomes. Drug oxidation activities decreased along the distance from the upper part of the small intestine except for warfarin hydroxylation. 3. Testosterone 6β-hydroxylation in the everted sacs exhibited the highest catalytic activities among the drug oxidations tested here. In the upper part of the small intestine, the testosterone 6β-hydroxylase activities of everted sacs subjected once to freezing and thawing were substantially decreased compared with the untreated everted sacs. 4. Testosterone 6β-hydroxylase activities in the everted sacs of the small intestine were significantly inhibited by ketoconazole. Immunoreactive proteins using anti-CYP3A antibodies were detected in the upper and middle parts of the small intestine. 5. The results demonstrated that the upper part of the mouse small intestine serves as the major site for intestinal P450 mediated first-pass metabolism. Everted sacs of the small intestine are therefore useful for the study of drug metabolism as well as of transport and absorption.


Xenobiotica | 1999

Activation of phenacetin O-deethylase activity by α-naphthoflavone in human liver microsomes

Miki Nakajima; Kaoru Kobayashi; K. Oshima; Noriaki Shimada; S. Tokudome; Kan Chiba; Tsuyoshi Yokoi

1. The roles of different human cytochrome P450s (CYP) in phenacetin O-deethylation were investigated using human liver microsomes and recombinant proteins. Phenacetin O-deethylase (POD) activities in human liver microsomes at substrate concentrations of 10 and 500 μM were inhibited by 0.1 and 1 μM α-naphthoflavone and activated by 10 and 100 μM α-naphthoflavone. The activation of POD activity in human liver microsomes by α-naphthoflavone was inhibited by 100 μM aniline, anti-CYP2E1 antibody, 1 μM ketoconazole and anti-CYP3A4 antibody. 2. In recombinant CYP from human B-lymphoblast cells, POD activities at a phenacetin concentration of 500 μM were detected for CYP2E1 and CYP3A4, as well as CYP1A2, CYP1A1, CYP2C19, CYP2C9 and CYP2A6. In recombinant CYP from human B-lymphoblast cells or baculovirus-infected insect cells and in reconstituted systems, a requirement of cytochrome b5 (b5) for POD activities catalysed by CYP2E1 and CYP3A4 was observed. The activation of POD activity by α-naphthoflavone was obser...

Collaboration


Dive into the Noriaki Shimada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Yamazaki

Showa Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge