Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norichika Iwashiro is active.

Publication


Featured researches published by Norichika Iwashiro.


JAMA Psychiatry | 2014

Mitigation of Sociocommunicational Deficits of Autism Through Oxytocin-Induced Recovery of Medial Prefrontal Activity: A Randomized Trial

Takamitsu Watanabe; Osamu Abe; Hitoshi Kuwabara; Noriaki Yahata; Yosuke Takano; Norichika Iwashiro; Tatsunobu Natsubori; Yuta Aoki; Hidemasa Takao; Yuki Kawakubo; Yoko Kamio; Nobumasa Kato; Yasushi Miyashita; Kiyoto Kasai; Hidenori Yamasue

IMPORTANCE Sociocommunicational deficits make it difficult for individuals with autism spectrum disorders (ASD) to understand communication content with conflicting verbal and nonverbal information. Despite growing prospects for oxytocin as a therapeutic agent for ASD, no direct neurobiological evidence exists for oxytocins beneficial effects on this core symptom of ASD. This is slowing clinical application of the neuropeptide. OBJECTIVE To directly examine whether oxytocin has beneficial effects on the sociocommunicational deficits of ASD using both behavioral and neural measures. DESIGN, SETTING, AND PARTICIPANTS At the University of Tokyo Hospital, we conducted a randomized, double-blind, placebo-controlled, within-subject-crossover, single-site experimental trial in which intranasal oxytocin and placebo were administered. A total of 40 highly functioning men with ASD participated and were randomized in the trial. INTERVENTIONS Single-dose intranasal administration of oxytocin (24 IU) and placebo. MAIN OUTCOMES AND MEASURES Using functional magnetic resonance imaging, we examined effects of oxytocin on behavioral neural responses of the participants to a social psychological task. In our previous case-control study using the same psychological task, when making decisions about social information with conflicting verbal and nonverbal contents, participants with ASD made judgments based on nonverbal contents less frequently with longer time and could not induce enough activation in the medial prefrontal cortex. Therefore, our main outcomes and measures were the frequency of the nonverbal information-based judgments (NVJs), the response time for NVJs, and brain activity of the medial prefrontal cortex during NVJs. RESULTS Intranasal oxytocin enabled the participants to make NVJs more frequently (P = .03) with shorter response time (P = .02). During the mitigated behavior, oxytocin increased the originally diminished brain activity in the medial prefrontal cortex (P < .001). Moreover, oxytocin enhanced functional coordination in the area (P < .001), and the magnitude of these neural effects was predictive of the behavioral effects (P ≤ .01). CONCLUSIONS AND RELEVANCE These findings provide the first neurobiological evidence for oxytocins beneficial effects on sociocommunicational deficits of ASD and give us the initial account for neurobiological mechanisms underlying any beneficial effects of the neuropeptide. TRIAL REGISTRATION umin.ac.jp/ctr Identifier: UMIN000002241 and UMIN000004393.


Brain | 2015

Clinical and neural effects of six-week administration of oxytocin on core symptoms of autism.

Takamitsu Watanabe; Hitoshi Kuwabara; Yuta Aoki; Norichika Iwashiro; Natsubori Tatsunobu; Hidemasa Takao; Yasumasa Nippashi; Yuki Kawakubo; Akira Kunimatsu; Kiyoto Kasai; Hidenori Yamasue

Autism spectrum disorder is a prevalent neurodevelopmental disorder with no established pharmacological treatment for its core symptoms. Although previous literature has shown that single-dose administration of oxytocin temporally mitigates autistic social behaviours in experimental settings, it remains in dispute whether such potentially beneficial responses in laboratories can result in clinically positive effects in daily life situations, which are measurable only in long-term observations of individuals with the developmental disorder undergoing continual oxytocin administration. Here, to address this issue, we performed an exploratory, randomized, double-blind, placebo-controlled, crossover trial including 20 high-functional adult males with autism spectrum disorder. Data obtained from 18 participants who completed the trial showed that 6-week intranasal administration of oxytocin significantly reduced autism core symptoms specific to social reciprocity, which was clinically evaluated by Autism Diagnostic Observation Scale (P = 0.034, PFDR < 0.05, Cohens d = 0.78). Critically, the improvement of this clinical score was accompanied by oxytocin-induced enhancement of task-independent resting-state functional connectivity between anterior cingulate cortex and dorso-medial prefrontal cortex (rho = -0.60, P = 0.011), which was measured by functional magnetic resonance imaging. Moreover, using the same social-judgement task as used in our previous single-dose oxytocin trial, we confirmed that the current continual administration also significantly mitigated behavioural and neural responses during the task, both of which were originally impaired in autistic individuals (judgement tendency: P = 0.019, d = 0.62; eye-gaze effect: P = 0.03, d = 0.56; anterior cingulate activity: P = 0.00069, d = 0.97; dorso-medial prefrontal activity: P = 0.0014, d = 0.92; all, PFDR < 0.05). Furthermore, despite its longer administration, these effect sizes of the 6-week intervention were not larger than those seen in our previous single-dose intervention. These findings not only provide the evidence for clinically beneficial effects of continual oxytocin administration on the core social symptoms of autism spectrum disorder with suggesting its underlying biological mechanisms, but also highlight the necessity to seek optimal regimens of continual oxytocin treatment in future studies.


Schizophrenia Bulletin | 2014

Reduced Frontal Glutamate + Glutamine and N-Acetylaspartate Levels in Patients With Chronic Schizophrenia but not in Those at Clinical High Risk for Psychosis or With First-Episode Schizophrenia

Tatsunobu Natsubori; Hideyuki Inoue; Osamu Abe; Yosuke Takano; Norichika Iwashiro; Yuta Aoki; Shinsuke Koike; Noriaki Yahata; Masaki Katsura; Wataru Gonoi; Hiroki Sasaki; Hidemasa Takao; Kiyoto Kasai; Hidenori Yamasue

Changes in brain pathology as schizophrenia progresses have been repeatedly suggested by previous studies. Meta-analyses of previous proton magnetic resonance spectroscopy ((1)H MRS) studies at each clinical stage of schizophrenia indicate that the abnormalities of N-acetylaspartate (NAA) and glutamatergic metabolites change progressively. However, to our knowledge, no single study has addressed the possible differences in (1)H MRS abnormalities in subjects at 3 different stages of disease, including those at ultrahigh risk for psychosis (UHR), with first-episode schizophrenia (FES), and with chronic schizophrenia (ChSz). In the current study, 24 patients with UHR, 19 FES, 25 ChSz, and their demographically matched 3 independent control groups (n = 26/19/28 for the UHR, FES, and ChSz control groups, respectively) underwent (1)H MRS in a 3-Tesla scanner to examine metabolites in medial prefrontal cortex. The analysis revealed significant decreases in the medial prefrontal NAA and glutamate + glutamine (Glx) levels, specifically in the ChSz group as indexed by a significant interaction between stage (UHR/FES/ChSz) and clinical status (patients/controls) (P = .008). Furthermore, the specificity of NAA and Glx reductions compared with the other metabolites in the patients with ChSz was also supported by a significant interaction between the clinical status and types of metabolites that only occurred at the ChSz stage (P = .001 for NAA, P = .004 for Glx). The present study demonstrates significant differences in (1)H MRS abnormalities at different stages of schizophrenia, which potentially correspond to changes in glutamatergic neurotransmission, plasticity, and/or excitotoxicity and regional neuronal integrity with relevance for the progression of schizophrenia.


Molecular Psychiatry | 2015

Oxytocin’s neurochemical effects in the medial prefrontal cortex underlie recovery of task-specific brain activity in autism: a randomized controlled trial

Yuta Aoki; Takamitsu Watanabe; Osamu Abe; Hitoshi Kuwabara; Noriaki Yahata; Yosuke Takano; Norichika Iwashiro; Tatsunobu Natsubori; Hidemasa Takao; Yuki Kawakubo; Kiyoto Kasai; Hidenori Yamasue

The neuropeptide oxytocin may be an effective therapeutic strategy for the currently untreatable social and communication deficits associated with autism. Our recent paper reported that oxytocin mitigated autistic behavioral deficits through the restoration of activity in the ventromedial prefrontal cortex (vmPFC), as demonstrated with functional magnetic resonance imaging (fMRI) during a socio-communication task. However, it is unknown whether oxytocin exhibited effects at the neuronal level, which was outside of the specific task examined. In the same randomized, double-blind, placebo-controlled, within-subject cross-over clinical trial in which a single dose of intranasal oxytocin (24 IU) was administered to 40 men with high-functioning autism spectrum disorder (UMIN000002241/000004393), we measured N-acetylaspartate (NAA) levels, a marker for neuronal energy demand, in the vmPFC using 1H-magnetic resonance spectroscopy (1H-MRS). The differences in the NAA levels between the oxytocin and placebo sessions were associated with oxytocin-induced fMRI signal changes in the vmPFC. The oxytocin-induced increases in the fMRI signal could be predicted by the NAA differences between the oxytocin and placebo sessions (P=0.002), an effect that remained after controlling for variability in the time between the fMRI and 1H-MRS scans (P=0.006) and the order of administration of oxytocin and placebo (P=0.001). Furthermore, path analysis showed that the NAA differences in the vmPFC triggered increases in the task-dependent fMRI signals in the vmPFC, which consequently led to improvements in the socio-communication difficulties associated with autism. The present study suggests that the beneficial effects of oxytocin are not limited to the autistic behavior elicited by our psychological task, but may generalize to other autistic behavioral problems associated with the vmPFC.


PLOS ONE | 2012

Diminished Medial Prefrontal Activity behind Autistic Social Judgments of Incongruent Information

Takamitsu Watanabe; Noriaki Yahata; Osamu Abe; Hitoshi Kuwabara; Hideyuki Inoue; Yosuke Takano; Norichika Iwashiro; Tatsunobu Natsubori; Yuta Aoki; Hidemasa Takao; Hiroki Sasaki; Wataru Gonoi; Mizuho Murakami; Masaki Katsura; Akira Kunimatsu; Yuki Kawakubo; Hideo Matsuzaki; Kenji J. Tsuchiya; Nobumasa Kato; Yukiko Kano; Yasushi Miyashita; Kiyoto Kasai; Hidenori Yamasue

Individuals with autism spectrum disorders (ASD) tend to make inadequate social judgments, particularly when the nonverbal and verbal emotional expressions of other people are incongruent. Although previous behavioral studies have suggested that ASD individuals have difficulty in using nonverbal cues when presented with incongruent verbal-nonverbal information, the neural mechanisms underlying this symptom of ASD remain unclear. In the present functional magnetic resonance imaging study, we compared brain activity in 15 non-medicated adult males with high-functioning ASD to that of 17 age-, parental-background-, socioeconomic-, and intelligence-quotient-matched typically-developed (TD) male participants. Brain activity was measured while each participant made friend or foe judgments of realistic movies in which professional actors spoke with conflicting nonverbal facial expressions and voice prosody. We found that the ASD group made significantly less judgments primarily based on the nonverbal information than the TD group, and they exhibited significantly less brain activity in the right inferior frontal gyrus, bilateral anterior insula, anterior cingulate cortex/ventral medial prefrontal cortex (ACC/vmPFC), and dorsal medial prefrontal cortex (dmPFC) than the TD group. Among these five regions, the ACC/vmPFC and dmPFC were most involved in nonverbal-information-biased judgments in the TD group. Furthermore, the degree of decrease of the brain activity in these two brain regions predicted the severity of autistic communication deficits. The findings indicate that diminished activity in the ACC/vmPFC and dmPFC underlies the impaired abilities of individuals with ASD to use nonverbal content when making judgments regarding other people based on incongruent social information.


Schizophrenia Research | 2012

Localized gray matter volume reductions in the pars triangularis of the inferior frontal gyrus in individuals at clinical high-risk for psychosis and first episode for schizophrenia

Norichika Iwashiro; Motomu Suga; Yosuke Takano; Hideyuki Inoue; Tatsunobu Natsubori; Yoshihiro Satomura; Shinsuke Koike; Noriaki Yahata; Mizuho Murakami; Masaki Katsura; Wataru Gonoi; Hiroki Sasaki; Hidemasa Takao; Osamu Abe; Kiyoto Kasai; Hidenori Yamasue

Recent studies have suggested an important role for Brocas region and its right hemisphere counterpart in the pathophysiology of schizophrenia, owing to its roles in language and interpersonal information processing. Brocas region consists of the pars opercularis (PO) and the pars triangularis (PT). Neuroimaging studies have suggested that they have differential functional roles in healthy individuals and contribute differentially to the pathogenesis of schizophrenic symptoms. However, volume changes in these regions in subjects with ultra-high risk for psychosis (UHR) or first-episode schizophrenia (FES) have not been clarified. In the present 3 Tesla magnetic resonance imaging study, we separately measured the gray matter volumes of the PO and PT using a reliable manual-tracing volumetry in 80 participants (20 with UHR, 20 with FES, and 40 matched controls). The controls constituted two groups: the first group was matched for age, sex, parental socioeconomic background, and intelligence quotient to UHR (n=20); the second was matched for those to FES (n=20). Compared with matched controls, the volume of the bilateral PT, but not that of the PO, was significantly reduced in the subjects with UHR and FES. The reduced right PT volume, which showed the largest effect size among regions-of-interest in the both UHR and FES groups, correlated with the severity of the positive symptoms also in the both groups. These results suggest that localized gray matter volume reductions of the bilateral PT represent a vulnerability to schizophrenia in contrast to the PO volume, which was previously found to be reduced in patients with chronic schizophrenia. The right PT might preferentially contribute to the pathogenesis of psychotic symptoms.


Translational Psychiatry | 2014

A snapshot of plasma metabolites in first-episode schizophrenia: a capillary electrophoresis time-of-flight mass spectrometry study

Shinsuke Koike; Miki Bundo; Kazuya Iwamoto; Motomu Suga; Hitoshi Kuwabara; Y Ohashi; K Shinoda; Yosuke Takano; Norichika Iwashiro; Yoshihiro Satomura; Tatsuya Nagai; Tatsunobu Natsubori; Mariko Tada; Hidenori Yamasue; Kiyoto Kasai

Few biomarkers have been known that can easily measure clinical conditions in mental illnesses such as schizophrenia. Capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS) is a new method that can measure ionized and low-molecular-weight metabolites. To explore global metabolomic alterations that characterize the onset of schizophrenia and identify biomarkers, we profiled the relative and absolute concentrations of the plasma metabolites from 30 patients with first-episode schizophrenia (FESZ, four drug-naïve samples), 38 healthy controls and 15 individuals with autism spectrum disorders using CE-TOFMS. Five metabolites had robust changes (increased creatine and decreased betaine, nonanoic acid, benzoic acid and perillic acid) in two independent sample sets. Altered levels of these metabolites are consistent with well-known hypotheses regarding abnormalities of the homocysteine metabolism, creatine kinase-emia and oxidative stress. Although it should be considered that most patients with FESZ received medication, these metabolites are candidate biomarkers to improve the determination of diagnosis, severity and clinical stages, especially for FESZ.


PLOS ONE | 2013

Altered Metabolites in the Plasma of Autism Spectrum Disorder: A Capillary Electrophoresis Time-of-Flight Mass Spectroscopy Study

Hitoshi Kuwabara; Hidenori Yamasue; Shinsuke Koike; Hideyuki Inoue; Yuki Kawakubo; Yosuke Takano; Norichika Iwashiro; Tatsunobu Natsubori; Yuta Aoki; Yukiko Kano; Kiyoto Kasai

Clinical diagnosis and severity of autism spectrum disorders (ASD) are determined by trained clinicians based on clinical evaluations of observed behaviors. As such, this approach is inevitably dependent on the expertise and subjective assessment of those administering the clinical evaluations. There is a need to identify objective biological markers associated with diagnosis or clinical severity of the disorder. To identify novel candidate metabolites as potential biomarkers for ASD, the current study applied capillary electrophoresis time-of-flight mass spectroscopy (CE-TOFMS) for high-throughput profiling of metabolite levels in the plasma of 25 psychotropic-naïve adult males with high-functioning ASD and 28 age-matched typically-developed control subjects. Ten ASD participants and ten age-matched controls were assigned in the first exploration set, while 15 ASD participants and 18 controls were included in the second replication set. By CE-TOFMS analysis, a total of 143 metabolites were detected in the plasma of the first set. Of these, 17 metabolites showed significantly different relative areas between the ASD participants and the controls (p<0.05). Of the 17 metabolites, we consistently found that the ASD participants had significantly high plasma levels of arginine (p = 0.024) and taurine (p = 0.018), and significantly low levels of 5-oxoproline (p<0.001) and lactic acid (p = 0.031) compared with the controls in the second sample set. Further confirmatory analysis using quantification of absolute metabolite concentrations supported the robustness of high arginine (p = 0.001) and low lactic acid (p = 0.003) in the combined sample (n = 53). The present study identified deviated plasma metabolite levels associated with oxidative stress and mitochondrial dysfunction in individuals with ASD.


Schizophrenia Research | 2013

A multimodal approach to investigate biomarkers for psychosis in a clinical setting: The integrative neuroimaging studies in schizophrenia targeting for early intervention and prevention (IN-STEP) project

Shinsuke Koike; Yosuke Takano; Norichika Iwashiro; Yoshihiro Satomura; Motomu Suga; Tatsuya Nagai; Tatsunobu Natsubori; Mariko Tada; Yukika Nishimura; Syudo Yamasaki; Noriaki Yahata; Tsuyoshi Araki; Hidenori Yamasue; Kiyoto Kasai

Longitudinal clinical investigations and biological measurements have determined not only progressive brain volumetric and functional changes especially around the onset of psychosis but also the abnormality of developmental pathways based on gene-environment interaction model. However, these studies have contributed little to clinical decisions on their diagnosis and therapeutic choices because of subtle differences between patients and healthy controls. A multi-modal approach may resolve this limitation and is favorable to explore the pathophysiology of psychosis. The integrative neuroimaging studies for schizophrenia targeting early intervention and prevention (IN-STEP) is a research project aimed at exploring the pathophysiological features of the onset of psychosis and investigating possible predictive biomarkers for the clinical treatment of psychosis. Since 2008, we have adopted blood sampling, neurocognitive batteries, neurophysiological assessment, structural imaging, and functional imaging longitudinally for help-seeking ultra-high-risk (UHR) individuals and patients with first-episode psychosis (FEP). Here, we intend to introduce the IN-STEP research study protocol and present preliminary clinical findings. Thirty-seven UHR individuals and 30 patients with FEP participated in this study. Six months later, there was no difference in objective and subjective scores between the groups, which suggests that young people having symptoms and functional deficits should be cared for regardless of their history of psychosis according to their clinical stages. The rate of transition to psychosis was 7.1%, 8.0%, and 35.3% (at 6, 12, and 24months, respectively). Through this research project, we expect to clarify the pathophysiological features around the onset of psychosis and improve the prognosis of psychosis through clinical application.


Translational Psychiatry | 2012

Absence of age-related prefrontal NAA change in adults with autism spectrum disorders.

Yuta Aoki; Osamu Abe; Noriaki Yahata; Hitoshi Kuwabara; Tatsunobu Natsubori; Norichika Iwashiro; Yosuke Takano; Hideyuki Inoue; Yuki Kawakubo; Wataru Gonoi; Hiroki Sasaki; Mizuho Murakami; Masaki Katsura; Yasumasa Nippashi; Hidemasa Takao; Akira Kunimatsu; Hideo Matsuzaki; Kenji J. Tsuchiya; Nobumasa Kato; Kiyoto Kasai; Hidenori Yamasue

Atypical trajectory of brain growth in autism spectrum disorders (ASDs) has been recognized as a potential etiology of an atypical course of behavioral development. Numerous neuroimaging studies have focused on childhood to investigate atypical age-related change of brain structure and function, because it is a period of neuron and synapse maturation. Recent studies, however, have shown that the atypical age-related structural change of autistic brain expands beyond childhood and constitutes neural underpinnings for lifelong difficulty to behavioral adaptation. Thus, we examined effects of aging on neurochemical aspects of brain maturation using 3-T proton magnetic resonance spectroscopy (1H-MRS) with single voxel in the medial prefrontal cortex (PFC) in 24 adult men with non-medicated high-functioning ASDs and 25 age-, IQ- and parental-socioeconomic-background-matched men with typical development (TD). Multivariate analyses of covariance demonstrated significantly high N-acetylaspartate (NAA) level in the ASD subjects compared with the TD subjects (F=4.83, P=0.033). The low NAA level showed a significant positive correlation with advanced age in the TD group (r=−0.618, P=0.001), but was not evident among the ASD individuals (r=0.258, P=0.223). Fisher’s r-to-z transformation showed a significant difference in the correlations between the ASD and TD groups (Z=−3.23, P=0.001), which indicated that the age–NAA relationship was significantly specific to people with TD. The current 1H-MRS study provided new evidence that atypical age-related change of neurochemical aspects of brain maturation in ASD individuals expands beyond childhood and persists during adulthood.

Collaboration


Dive into the Norichika Iwashiro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge