Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norifumi Iijima is active.

Publication


Featured researches published by Norifumi Iijima.


Science | 2014

A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells

Norifumi Iijima; Akiko Iwasaki

Resident memory T cells sound the alarm Immunological memory protects against reinfection. Resident memory T cells (TRM) are long-lived and remain in the tissues where they first encountered a pathogen (see the Perspective by Carbone and Gebhardt). Schenkel et al. and Ariotti et al. found that CD8+ TRM cells act like first responders in the female reproductive tissue or the skin of mice upon antigen reencounter. By secreting inflammatory proteins, TRM cells rapidly activated local immune cells to respond, so much so that they protected against infection with an unrelated pathogen. Iijima and Iwasaki found that CD4+ TRM cells protected mice against reinfection with intravaginal herpes simplex virus 2. Science, this issue p. 98, p. 101, p. 93; see also p. 40 Tissue-resident memory CD4+ T cells protect mice against lethal reinfection with herpes simplex virus 2. [Also see Perspective by Carbone and Gebhardt] CD8 tissue-resident memory T (TRM) cells provide efficient local control of viral infection, but the role of CD4 TRM is less clear. Here, by using parabiotic mice, we show that a preexisting pool of CD4 TRM cells in the genital mucosa was required for full protection from a lethal herpes simplex virus 2 (HSV-2) infection. Chemokines secreted by a local network of macrophages maintained vaginal CD4 TRM in memory lymphocyte clusters (MLCs), independently of circulating memory T cells. CD4 TRM cells within the MLCs were enriched in clones that expanded in response to HSV-2. Our results highlight the need for vaccine strategies that enable establishment of TRM cells for protection from a sexually transmitted virus and provide insights as to how such a pool might be established.


Journal of Immunology | 2006

Cutting Edge: Plasmacytoid Dendritic Cells Provide Innate Immune Protection against Mucosal Viral Infection In Situ

Jennifer M. Lund; Melissa M. Linehan; Norifumi Iijima; Akiko Iwasaki

Dendritic cells (DCs) are powerful APCs capable of activating naive lymphocytes. Of the DC subfamilies, plasmacytoid DCs (pDCs) are unique in that they secrete high levels of type I IFNs in response to viruses but their role in inducing adaptive immunity remains divisive. In this study, we examined the importance of pDCs and their ability to recognize a virus through TLR9 in immunity against genital HSV-2 infection. We show that a low number of pDCs survey the vaginal mucosa at steady state. Upon infection, pDCs are recruited to the vagina and produce large amounts of type I IFNs in a TLR9-dependent manner and suppress local viral replication. Although pDCs are critical in innate defense against genital herpes challenge, adaptive Th1 immunity developed normally in the absence of pDCs. Thus, by way of migrating directly into the peripheral mucosa, pDCs act strictly as innate antiviral effector cells against mucosal viral infection in situ.


Journal of Experimental Medicine | 2008

Dendritic cells and B cells maximize mucosal Th1 memory response to herpes simplex virus

Norifumi Iijima; Melissa M. Linehan; Melodie Zamora; Debbie Butkus; Robert Dunn; Marilyn R. Kehry; Terri M. Laufer; Akiko Iwasaki

Although the importance of cytotoxic T lymphocytes and neutralizing antibodies for antiviral defense is well known, the antiviral mechanism of Th1 remains unclear. We show that Th1 cells mediate noncytolytic antiviral protection independent of direct lysis through local secretion of IFN-γ after herpes simplex virus (HSV) 2 infection. IFN-γ acted on stromal cells, but not on hematopoietic cells, to prevent further viral replication and spread throughout the vaginal mucosa. Importantly, unlike other known Th1 defense mechanisms, this effector function did not require recognition of virally infected cells via MHC class II. Instead, recall Th1 response was elicited by MHC class II+ antigen-presenting cells at the site of infection. Dendritic cells (DCs) were not required and only partially sufficient to induce a recall response from memory Th1 cells. Importantly, DCs and B cells together contributed to restimulating memory CD4 T cells to secrete IFN-γ. In the absence of both DCs and B cells, immunized mice rapidly succumbed to HSV-2 infection and death. Thus, these results revealed a distinct mechanism by which memory Th1 cells mediate noncytolytic IFN-γ–dependent antiviral protection after recognition of processed viral antigens by local DCs and B cells.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue

Norifumi Iijima; Lisa M. Mattei; Akiko Iwasaki

Monocytes patrol various tissues for signs of infection and inflammation. Inflammatory monocytes enter peripheral tissues at sites of microbial infection and differentiate into dendritic cells and macrophages. Here, we examined the importance of monocytes in primary mucosal infection with herpes simplex virus 2 (HSV-2), and demonstrate that monocyte-derived APCs are required to elicit IFN-γ secretion from effector Th1 cells to mediate antiviral protection. However, monocyte-derived APCs were dispensable for the generation of Th1 immunity and for the restimulation of memory Th1 cells during secondary viral challenge. These results demonstrate that distinct APC subsets are dedicated for CD4 T cell priming, elicitation, and memory recall responses to a given viral pathogen within the same mucosal tissue and reveal a specialized role for monocyte-derived APCs in the emergency response to infection.


Journal of Experimental Medicine | 2009

Differential roles of migratory and resident DCs in T cell priming after mucosal or skin HSV-1 infection

Heung Kyu Lee; Melodie Zamora; Melissa M. Linehan; Norifumi Iijima; David Gonzalez; Ann M. Haberman; Akiko Iwasaki

Although mucosal surfaces represent the main portal of entry for pathogens, the mechanism of antigen presentation by dendritic cells (DCs) that patrol various mucosal tissues remains unclear. Instead, much effort has focused on the understanding of initiation of immune responses generated against antigens delivered by injection. We examined the contributions of migratory versus lymph node–resident DC populations in antigen presentation to CD4 and CD8 T cells after needle injection, epicutaneous infection, or vaginal mucosal herpes simplex virus (HSV) 1 infection. We show that upon needle injection, HSV-1 became lymph-borne and was rapidly presented by lymph node–resident DCs to CD4 and CD8 T cells. In contrast, after vaginal HSV-1 infection, antigens were largely presented by tissue-derived migrant DCs with delayed kinetics. In addition, migrant DCs made more frequent contact with HSV-specific T cells after vaginal infection compared with epicutaneous infection. Thus, both migrant and resident DCs play an important role in priming CD8 and CD4 T cell responses, and their relative importance depends on the mode of infection in vivo.


Cell Host & Microbe | 2012

A Neuron-Specific Role for Autophagy in Antiviral Defense against Herpes Simplex Virus

Brian Yordy; Norifumi Iijima; Anita Huttner; David A. Leib; Akiko Iwasaki

Type I interferons (IFNs) are considered to be the universal mechanism by which viral infections are controlled. However, many IFN-stimulated genes (ISGs) rely on antiviral pathways that are toxic to host cells, which may be detrimental in nonrenewable cell types, such as neurons. We show that dorsal root ganglionic (DRG) neurons produced little type I IFNs in response to infection with a neurotropic virus, herpes simplex type 1 (HSV-1). Further, type I IFN treatment failed to completely block HSV-1 replication or to induce IFN-primed cell death in neurons. We found that DRG neurons required autophagy to limit HSV-1 replication both in vivo and in vitro. In contrast, mucosal epithelial cells and other mitotic cells responded robustly to type I IFNs and did not require autophagy to control viral replication. These findings reveal a fundamental difference in the innate antiviral strategies employed by neurons and mitotic cells to control HSV-1 infection.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Vaginal epithelial dendritic cells renew from bone marrow precursors

Norifumi Iijima; Melissa M. Linehan; Sem Saeland; Akiko Iwasaki

Dendritic cells (DCs) represent key professional antigen-presenting cells capable of initiating primary immune responses. A specialized subset of DCs, the Langerhans cells (LCs), are located in the stratified squamous epithelial layer of the skin and within the mucosal epithelial lining of the vaginal and oral cavities. The vaginal mucosa undergoes cyclic changes under the control of sex hormones, and the renewal characteristics of the vaginal epithelial DCs (VEDCs) remain unknown. Here, we examined the origin of VEDCs. In contrast to the skin epidermal LCs, the DCs in the epithelium of the vagina were found to be repopulated mainly by nonmonocyte bone-marrow-derived precursors, with a half-life of 13 days under steady-state conditions. Upon infection with HSV-2, the Gr-1hi monocytes were found to give rise to VEDCs. Furthermore, flow cytometric analysis of the VEDCs revealed the presence of at least three distinct populations, namely, CD11b+F4/80hi, CD11b+F4/80int, and CD11b−F4/80−. Importantly, these VEDC populations expressed CD207 at low levels and had a constitutively more activated phenotype compared with the skin LCs. Collectively, our results revealed mucosa-specific features of the VEDCs with respect to their phenotype, activation status, and homeostatic renewal potential.


Journal of Immunology | 2008

Novel Vaccination Protocol with Two Live Mucosal Vectors Elicits Strong Cell-Mediated Immunity in the Vagina and Protects against Vaginal Virus Challenge

Zhongxia Li; Manxin Zhang; Chenghui Zhou; Xinyan Zhao; Norifumi Iijima; Fred R. Frankel

Most HIV infections result from heterosexual transmission to women. Because cellular immunity plays a key role in the control of the infection, we sought to strengthen cellular immune responses in vaginal tissue. We explored a novel prime-boost protocol that used two live mucosal agents that trigger different pathways of innate immunity and induce strong cellular immunity. Adenovirus serotype 5 (Ad5) has frequently been used as a boost for DNA vaccines. In this study we used attenuated, recombinant L. monocytogenes-gag (rLm-gag) to prime mice by various mucosal routes—oral, intrarectal, and intravaginally (ivag)—followed by a systemic or mucosal boost with replication-defective rAd5-gag. Mice primed with a single administration of rLm-gag by any route and then boosted with rAd5-gag intramuscularly exhibited abundant Gag-specific CD8 T cells in spleen and vaginal lamina propria. Conversely, when boosted with rAd5-gag ivag, the immune response was reoriented toward the vagina with strikingly higher CD8 T cell responses in that tissue, particularly after ivag immunization by both vectors (ivag/ivag). Five weeks to 5 mo later, ivag/ivag-immunized mice continued to show high levels of effector memory CD8 T cells in vagina, while the pool of memory T cells in spleen assumed a progressively more central memory T cell phenotype. The memory mice showed high in vivo CTL activity in vagina, a strong recall response, and robust protection after ivag vaccinia-gag challenge, suggesting that this prime-boost strategy can induce strong cellular immunity, especially in vaginal tissues, and might be able to block the heterosexual transmission of HIV-1 at the vaginal mucosa.


Trends in Immunology | 2015

Tissue instruction for migration and retention of TRM cells

Norifumi Iijima; Akiko Iwasaki

During infection, a subset of effector T cells seeds the lymphoid and non-lymphoid tissues and gives rise to tissue-resident memory T cells (TRM). Recent findings have provided insight into the molecular and cellular mechanisms underlying tissue instruction of TRM cell homing, as well as the programs involved in their retention and maintenance. We review these findings here, highlighting both common features and distinctions between CD4 TRM and CD8 TRM cells. In this context we examine the role of memory lymphocyte clusters (MLCs), and propose that the MLCs serve as an immediate response center consisting of TRM cells on standby, capable of detecting incoming pathogens and mounting robust local immune responses to contain and limit the spread of infectious agents.


Nature | 2016

Access of protective antiviral antibody to neuronal tissues requires CD4 T-cell help

Norifumi Iijima; Akiko Iwasaki

Circulating antibodies can access most tissues to mediate surveillance and elimination of invading pathogens. Immunoprivileged tissues such as the brain and the peripheral nervous system are shielded from plasma proteins by the blood–brain barrier and blood–nerve barrier, respectively. Yet, circulating antibodies must somehow gain access to these tissues to mediate their antimicrobial functions. Here we examine the mechanism by which antibodies gain access to neuronal tissues to control infection. Using a mouse model of genital herpes infection, we demonstrate that both antibodies and CD4 T cells are required to protect the host after immunization at a distal site. We show that memory CD4 T cells migrate to the dorsal root ganglia and spinal cord in response to infection with herpes simplex virus type 2. Once inside these neuronal tissues, CD4 T cells secrete interferon-γ and mediate local increase in vascular permeability, enabling antibody access for viral control. A similar requirement for CD4 T cells for antibody access to the brain is observed after intranasal challenge with vesicular stomatitis virus. Our results reveal a previously unappreciated role of CD4 T cells in mobilizing antibodies to the peripheral sites of infection where they help to limit viral spread.

Collaboration


Dive into the Norifumi Iijima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge