Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norihide Takeyama is active.

Publication


Featured researches published by Norihide Takeyama.


Publications of the Astronomical Society of Japan | 2007

The Infrared Camera (IRC) for AKARI–Design and Imaging Performance

Takashi Onaka; Hideo Matsuhara; Takehiko Wada; Naofumi Fujishiro; Hideaki Fujiwara; Miho Ishigaki; Daisuke Ishihara; Yoshifusa Ita; Hirokazu Kataza; Woojung Kim; Toshio Matsumoto; Hiroshi Murakami; Youichi Ohyama; Shinki Oyabu; Itsuki Sakon; Toshihiko Tanabe; Toshinobu Takagi; Kazunori Uemizu; Munetaka Ueno; F. Usui; Hidenori Watarai; Martin Cohen; Keigo Enya; Takafumi Ootsubo; Chris P. Pearson; Norihide Takeyama; Tomoyasu Yamamuro; Yuji Ikeda

The Infrared Camera (IRC) is one of two focal-plane instruments on the AKARI satellite. It is designed for wide-field deep imaging and low-resolution spectroscopy in the nearto mid-infrared (1.8–26.5 m) in the pointed observation mode of AKARI. The IRC is also operated in the survey mode to make an All-Sky Survey at 9 and 18 m. It comprises three channels. The NIR channel (1.8–5.5 m) employs a 512 412 InSb array, whereas both the MIR-S (4.6–13.4 m) and MIR-L (12.6–26.5 m) channels use 256 256 Si:As impurity band conduction arrays. Each of the three channels has a field-of-view of about 100 100, and they are operated simultaneously. The NIR and MIR-S share the same field-of-view by virtue of a beam splitter. The MIR-L observes the sky about 250 away from the NIR/MIR-S field-of-view. The IRC gives us deep insights into the formation and evolution of galaxies, the evolution of planetary disks, the process of star-formation, the properties of interstellar matter under various physical conditions, and the nature and evolution of solar system objects. The in-flight performance of the IRC has been confirmed to be in agreement with the pre-flight expectation. This paper summarizes the design and the in-flight operation and imaging performance of the IRC.


Journal of Biotechnology | 2002

Single-cell viability assessment with a novel spectro-imaging system.

Hideaki Matsuoka; Yuri Kosai; Mikako Saito; Norihide Takeyama; Hiroshi Suto

Single-cell viability assessment by means of plural dye probes require the spectral and temporal analysis of microscopic images of the test cells. To meet this requirement, we have developed a simple and compact spectro-imaging system using an image slicer and a grism. The image slicer was made of a bundle of 100 optical fibers. The field of view is divided into 10 x 10 sections. The spectral data of each section could be recorded every 5 s in the range from 400 to 800 nm at 5 nm resolution. The viability changes of yeast or tobacco single-cells were measured with this system. Using BY-2 cells, for example, the response to a chemical stress of saponin was measured by means of two fluorescent probes. The spectral-spatial-temporal data of fluorescein and DNA bound ethidium bromide provided us with useful information about the dynamic change of cell membrane permeability from which the cell viability was assessed.


Proceedings of SPIE | 2004

The Solar Optical Telescope onboard the Solar-B

Kiyoshi Ichimoto; Saku Tsuneta; Yoshinori Suematsu; Toshifumi Shimizu; Masashi Otsubo; Yoshihiro Kato; Motokazu Noguchi; Masao Nakagiri; Tomonori Tamura; Yukio Katsukawa; Masahito Kubo; Yasushi Sakamoto; Hirohisa Hara; Kenji Minesugi; Akira Ohnishi; Hideo Saito; Noboru Kawaguchi; Tadashi Matsushita; Toshitaka Nakaoji; Kazuhiro Nagae; Joji Sakamoto; Yoshihiro Hasuyama; Izumi Mikami; Keizo Miyawaki; Yasushi Sakurai; Nobuaki Kaido; Toshihida Horiuchi; Sadanori Shimada; Toshio Inoue; Masaaki Mitsutake

The solar optical telescope onboard the Solar-B is aimed to perform a high precision polarization measurements of the solar spectral lines in visible wavelengths to obtain, for the first time, continuous sets of high spatial resolution (~0.2arcsec) and high accuracy vector-magnetic-field map of the sun for studying the mechanisms driving the fascinating activity phenomena occurring in the solar atmosphere. The optical telescope assembly (OTA) is a diffraction limited, aplanatic Gregorian telescope with an aperture of Φ500mm. With a collimating lens unit and an active folding mirror, the OTA provides a pointing-stabilized parallel beam to the focal plane package (FPP) with a field of view of about 360x200arcsec. In this paper we identify the key technical issues of OTA for achieving the mission goal and describe the basic concepts in its optical, mechanical and thermal designs. The strategy to verify the in-orbit performance of the telescope is also discussed.


Optical Engineering | 2006

Measurement of refractive indices of 20 optical materials at low temperatures

Tomoyasu Yamamuro; S. Sato; Takahiro Zenno; Norihide Takeyama; Hideo Matsuhara; Ippei Maeda; Yoshio Matsueda

We build a refractometer capable of measuring refractive indices at low temperatures from visible to near-infrared wavelength. Refractive indices of 20 optical materials (three fluorides, 15 glasses, fused silica, and KRS-5) are measured at wavelengths of 365.0, 435.8, 546.1, 1014.0, 1529.6, 2122, and 3298 nm at temperatures of ~80, 120, 180, 240, and 293 K. The temperature dependences of the refractive indices are shown in a table and figures.


Astronomical Telescopes and Instrumentation | 2000

Kyoto tridimensional spectrograph II: progress

Hajime Sugai; Hiroshi Ohtani; Shinobu Ozaki; Takashi Hattori; Motomi Ishii; Tsuyoshi Ishigaki; Tadashi Hayashi; Minoru Sasaki; Norihide Takeyama

We are building the Kyoto tridimensional spectrograph II and are planning to mount it on Subaru telescope. The spectrograph has four observational modes: Fabry-Perot imager, integral field spectrograph (IFS) with a microlens array, long-slit spectrograph, and filter-imaging modes. The optics is designed to be used in wide wavelength range from 360 nm to 900 nm. The design well matches with high spatial resolution of Subaru: 0 inch .06 pixel-1 in Fabry- Perot mode, for which we actually will use binning before adaptive optics at optical wavelengths becomes available, and 0 inch .1 lens-1 in microlens array mode. These well sample image sizes obtained by Subaru, which are about 0 inch .4 in relatively good conditions. We have evaluated a point spread function of our cylindrical microlens array and found that it consists of a diffraction pattern and more extended component which probably comes from border regions between microlenses. With a suitable mask at the micro pupil position, the crosstalk between spectra will be limited down to a few percent. With a suitable mask at the micro pupil position, the crosstalk between spectra will be limited down to a few percent. We have succeeded in synchronizing frequency switching of Fabry-Perot etalons with the movement of charge on the CCD. This technique enables to average out all temporal variations between each passband.


The Astrophysical Journal | 2005

SUBARCSECOND STRUCTURE AND VELOCITY FIELD OF OPTICAL LINE-EMITTING GAS IN NGC 1052

Hajime Sugai; Takashi Hattori; Atsushi Kawai; Shinobu Ozaki; George Kosugi; Hiroshi Ohtani; Tadashi Hayashi; Tsuyoshi Ishigaki; Motomi Ishii; Minoru Sasaki; Norihide Takeyama; M. Yutani; Tomonori Usuda; Saeko S. Hayashi; K. Namikawa

We have obtained integral field spectra of the low-ionization emission-line region in the galaxy NGC 1052 by using the Kyoto Tridimensional Spectrograph II mounted on the Subaru Telescope. Our high signal-to-noise ratio data with precise template subtraction have revealed weaker features at the nucleus, including the [Fe III] and He II emission lines, as well as a broad component of the Hβ emission. The broad Hβ component suggests the existence of a broad-line region. The spatial structure and velocity field derived from the data cube suggest the existence of three main components: a high-velocity bipolar outflow, low-velocity disk rotation, and a spatially unresolved nuclear component. The outflow axis does not coincide with the disk rotation axis. The opening angle of the outflow decreases with velocity shift from the systemic velocity both in bluer and redder velocity channels. This is explained only if the outflow has intrinsically higher velocity components inside, i.e., in regions closer to the outflow axis. At both sides of the bipolar outflow, we find that the highest velocity components are detached from the nucleus. This gap can be explained by an acceleration of at least a part of the flow or the surrounding matter, or by bow shocks that may be produced by even higher velocity outflow components that are not yet detected. Along the edges of the outflow and extending east-northeast and west-southwest, there exist strong [O III] emission ridges. These are closely related to the radio jet-counterjet structure. The abrupt change in the velocity field of the ionized gas and a large [O ]/Hβ line flux ratio in this region suggest a strong interaction of the jets, and possibly also of some ridge components of the line-emitting gas, with the interstellar matter.


Journal of Astronomy and Space Sciences | 2014

Conceptual Design of the NISS onboard NEXTSat-1

Woong-Seob Jeong; Sung-Joon Park; Kwijong Park; Dae-Hee Lee; Jeonghyun Pyo; Bongkon Moon; Youngsik Park; Il-Joong Kim; Won-Kee Park; Duk-Hang Lee; Chan Park; Kyeongyeon Ko; Toshio Matsumoto; Norihide Takeyama; Akito Enokuchi; Goo-Whan Shin; Jang-Soo Chae; Uk-Won Nam

The NISS onboard NEXTSat-1 is being developed by Korea astronomy and space science institute (KASI). For the study of the cosmic star formation history, the NISS performs the imaging spectroscopic observation in the near-infrared range for nearby galaxies, low background regions, star-forming regions and so on. It is designed to cover a wide field of view ( deg) and a wide wavelength range from 0.95 to by using linear variable filters. In order to reduce the thermal noise, the telescope and the infrared sensor are cooled down to 200 K and 80 K, respectively. Evading a stray light outside the field of view and making the most use of limited space, the NISS adopts the off-axis reflective optical system. The primary and the secondary mirrors, the opto-mechanical part and the mechanical structure are designed to be made of aluminum material. It reduces the degradation of optical performance due to a thermal variation. This paper presents the study on the conceptual design of the NISS.


Astronomical Telescopes and Instrumentation | 2003

Infrared Camera (IRC) onboard ASTRO-F

Takehiko Wada; Naofumi Fujishiro; Daisuke Ishihara; Hirokazu Kataza; Woojung Kim; Hideo Matsuhara; Toshio Matsumoto; Hiroshi Murakami; Takashi Onaka; Norihide Takeyama; Kazunori Uemizu; Munetaka Ueno; Hidenori Watarai

The infrared camera(IRC) onboard ASTRO-F is designed for wide-field imaging and spectroscopic observations at near- and mid-infrared wavelengths. The IRC consists of three channels; NIR, MIR-S and MIR-L, each of which covers wavelengths of 2-5, 5-12 and 12-26 micron, respectively. All channels adopt compact refractive optical designs. Large format array detectors (InSb 512x412 and Si:As IBC 256x256) are employed. Each channel has 10x10 arcmin wide FOV with diffraction-limited angular resolution of the 67cm telescope of ASTRO-F at wavelengths over 5 micron. A 6-position filter wheel is placed at the aperture stop in each channel, and has three band-pass filters, two grisms/prisms and a mask for dark current measurements. The 5 sigma sensitivity of one pointed observation is estimated to be 2, 11 and 62 micro-Jy at 4, 9, 20 micron bands, respectively. Because ASTRO-F is a low-earth orbiting satellite, the observing duration of each pointing is limited to 500 seconds. In addition to pointed observations, we plan to perform mid-infrared scanning observation. Fabrications of the flight-model of NIR, MIR-S, and the warm electronics have been mostly completed, while that of MIR-L is underway. The performance evaluation of the IRC in the first end-to-end test (including the satellite system) is presented.


Astronomical Telescopes and Instrumentation | 2003

Imaging performance of near-infrared (NIR) channel in infrared camera (IRC) onboard ASTRO-F

Woojung Kim; Hideo Matsuhara; Takashi Onaka; Kazunori Uemizu; Taketoshi Negishi; Norihide Takeyama

The Infrared Camera (IRC) is one of the focal-plane instruments on board ASTRO-F(Japanese Infrared Astronomical satellite to be launched in 2004). IRC will make imaging and spectroscopy observations in the near- and mid-infrared regions. IRC comprises of three channels; NIR, MIR-S and MIR-L, which cover 2-5, 5-12, and 12-26μm, respectively. In this paper we report the optical performance of the NIR imaging mode at cryogenic temperatures with three filters; N2, N3, and N4, which cover the wavelength regions of 2-2.7, 2.7-3.7, and 3.7-5.05μm, respectively. The NIR channel consists of three Si and one Ge lenses with the infrared array (412 x 512 format of InSb) manufactured by Raytheon IRO. At cryogenic temperatures (- 6K) we found slightly larger chromatic focal shifts than designed probably due to the uncertainty in low-temperature refractive indices of the lens materials. We obtained the modulation transfer function for each band by the knife-edge method and estimated the optical performance of the IRC with the telescope at cryogenic temperatures.


Proceedings of SPIE | 2011

Short telescope design of 1.5-m aperture solar UV visible and IR telescope aboard Solar-C

Y. Suematsu; Yukio Katsukawa; Toshifumi Shimizu; Kiyoshi Ichimoto; T. Horiuchi; Y. Matsumoto; Norihide Takeyama

We present an optical and thermal design of one of major instrumental payload planned for SOLAR-C mission/Plan-B (high resolution spectroscopic option): the telescope assembly of Solar Ultra-violet Visible and near IR observing Telescope (SUVIT). To accommodate a launchers nosecone size, a wide observing wavelength coverage from UV (down to 280 nm) through near IR (up to 1100 nm), and an 0.1 arcsec resolution in the field of 200 arcsec diameter, a short telescope design was made for a 1.5 m aperture solar Gregorian telescope with the compact design of three-mirror collimator unit.

Collaboration


Dive into the Norihide Takeyama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideo Matsuhara

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takehiko Wada

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar

Hidenori Watarai

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazunori Uemizu

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar

Munetaka Ueno

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar

Woojung Kim

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge