Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norihiko Fujii is active.

Publication


Featured researches published by Norihiko Fujii.


Journal of Biological Chemistry | 2012

A Rapid, Comprehensive Liquid Chromatography-Mass Spectrometry (LC-MS)-based Survey of the Asp Isomers in Crystallins from Human Cataract Lenses

Norihiko Fujii; Hiroaki Sakaue; Hiroshi Sasaki; Noriko Fujii

Background: Asp isomers in lens crystallins are one of the triggers of cataracts. Results: Multiple highly isomeric Asp sites in insoluble crystallins from cataract lenses were identified by LC-MS using the corresponding synthetic peptides as standards. Conclusion: Asp isomers induce insolubilization of crystallin, leading to cataracts. Significance: This study opens up a new field of protein biochemistry in age-related diseases. Cataracts are caused by clouding of the eye lens and may lead to partial or total loss of vision. The mechanism of cataract development, however, is not well understood. It is thought that abnormal aggregates of lens proteins form with age, causing loss of lens clarity and development of the cataract. Lens proteins are composed of soluble α-, β-, and γ-crystallins, and as long lived proteins, they undergo post-translational modifications including isomerization, deamidation, and oxidation, which induce insolubilization, aggregation, and loss of function that may lead to cataracts. Therefore, analysis of post-translational modifications of individual amino acid residues in proteins is important. However, detection of the optical isomers of amino acids formed in these proteins is difficult because optical resolution is only achieved using complex methodology. In this study, we describe a new method for the analysis of isomerization of individual Asp residues in proteins using LC-MS and the corresponding synthetic peptides containing the Asp isomers. This makes it possible to analyze isomers of Asp residues in proteins precisely and quickly. We demonstrate that Asp-58, -76, -84, and -151 of αA-crystallin and Asp-62 and -96 of αB-crystallin are highly converted to lβ-, dβ-, and dα-isomers. The amount of isomerization of Asp is greater in the insoluble fraction at all Asp sites in lens proteins, therefore indicating that isomerization of these Asp residues affects the higher order structure of the proteins and contributes to the increase in aggregation, insolubilization, and disruption of function of proteins in the lens, leading to the cataract.


Biochemistry | 2011

Simultaneous Stereoinversion and Isomerization at the Asp-4 Residue in βB2-Crystallin from the Aged Human Eye Lenses

Norihiko Fujii; Takehiro Kawaguchi; Hiroshi Sasaki; Noriko Fujii

The lens proteins are composed of α-, β-, and γ-crystallins that interact with each other to maintain the transparency and refractive power of the lens. Because the lens crystallins are long-lived proteins, they undergo various post-translational modifications including racemization, isomerization, deamidation, oxidation, glycation, and truncation. In βB2-crystallin, which is the most abundant β-crystallin, the deamidation of asparagine and glutamine residues has been reported. Here, we found that the aspartyl (Asp) residue at position 4 of βB2-crystallin in the lenses of elderly human individuals undergoes a significant degree of inversion and isomerization to the biologically uncommon residue D-β-Asp. Surprisingly, the D/L ratio of β-Asp at position 4 in βB2-crystallin from elderly donors (67-77 year old) was 0.88-3.21. A D/L ratio of amino acids greater than 1.0 is defined as an inversion of configuration from the L- to D-form, rather than a racemization. These extremely high D/L ratios are equivalent to those of Asp-58 and Asp-151 (D/L ratio: 3.1 for Asp-58 and 5.7 for Asp-151) in αA-crystallin from elderly donors (~80 year old) as reported previously. Initially, we identified specific Asp residues in the β-crystallin family of proteins that undergo a high degree of inversion. These results show that the isomerization and inversion of Asp residues occurs both in the α- and β-crystallins of the lens. Inversion of these Asp residues directly affects the higher order structure of the protein. Hence, this modification may change crystallin-crystallin interactions and disrupt the function of crystallins in the lens.


Journal of Chromatography B | 2011

D-Amino acids in aged proteins: analysis and biological relevance.

Noriko Fujii; Yuichi Kaji; Norihiko Fujii

Homochirality is essential for life. L-Amino acids are exclusively used as substrates for the polymerization and formation of peptides and proteins in living systems. However, d-amino acids, which are enantiomers of L-amino acids, were recently detected in various living organisms in the form of free D-amino acids and D-amino acid residues in peptides and proteins. In particular, D-aspartyl (Asp) residues have been detected in various proteins from diverse tissues of elderly individuals. Here, we describe three important aspects of our research: (i) a method for detecting D-β-Asp at specific sites in particular proteins, (ii) a likely spontaneous mechanism by which Asp residues in proteins invert and isomerize to the D-β-form with age under physiological conditions, (iii) a discussion of factors that favor such a reaction.


Chemistry & Biodiversity | 2010

Collapse of homochirality of amino acids in proteins from various tissues during aging.

Noriko Fujii; Yuichi Kaji; Norihiko Fujii; Tooru Nakamura; Ryota Motoie; Yuhei Mori; Tadatoshi Kinouchi

Prior to the emergence of life, it is believed that only L‐amino acids were selected for formation of proteins, and that D‐amino acids were eliminated on the primitive Earth. Whilst homochirality is essential for life, recently the occurrence of proteins containing D‐β‐aspartyl (Asp) residues from various tissues of elderly subjects has been reported. Here, we discuss the presence of D‐β‐Asp‐containing proteins in the lens, ciliary body, drusen, and sclera of the eye, skin, cardiac muscle, blood vessels of the lung, chief cells of the stomach, longitudinal and circular muscles of the stomach, and small and large intestines. Since the D‐β‐Asp residue occurs through a succinimide intermediate, this isomer may potentially be generated in proteins more easily than initially thought. UV Rays and oxidative stress can accelerate the formation of the D‐β‐Asp residue in proteins.


PLOS ONE | 2013

Kinetics of isomerization and inversion of aspartate 58 of αA-crystallin peptide mimics under physiological conditions.

Kenzo Aki; Norihiko Fujii; Noriko Fujii

Although proteins consist exclusively of L-amino acids, we have reported that aspartyl (Asp) 58 and Asp 151 residues of αA-crystallin of eye lenses from elderly cataract donors are highly inverted and isomerized to D-β, D-α and L-β-Asp residues through succinimide intermediates. Of these Asp isomers, large amounts of D-β- and L-β-isomers are present but the amount of D-α-isomer is not significant. The difference in abundance of the Asp isomers in the protein may be due to the rate constants for the formation of the isomers. However, the kinetics have not been well defined. Therefore, in this study, we synthesized a peptide corresponding to human αA-crystallin residues 55 to 65 (T55VLD58SGISEVR65) and its isomers in which L-α-Asp at position 58 was replaced with L-β-, D-β- and D-α-Asp and determined the rate of isomerization and inversion of Asp residues under physiological conditions (37°C, pH7.4). The rate constant for dehydration from L-α-Asp peptide to L-succinimidyl peptide was 3 times higher than the rate constant for dehydration from L-β-Asp peptide to L-succinimidyl peptide. The rate constant for hydrolysis from L-succinimidyl peptide to L-β-Asp peptide was about 5 times higher than the rate constant for hydrolysis from L-succinimidyl peptide to L-α-Asp peptide. The rate constant for dehydration from L-α-Asp peptide to L-succinimidyl peptide was 2 times higher than the rate constant for dehydration from D-α-Asp peptide to D-succinimidyl peptide. The rate constants for hydrolysis from L-succinimidyl peptide to L-β-Asp peptide and for hydrolysis from D-succinimidyl peptide to D-β-Asp peptide were almost equal. Using these rate constants, we calculated the change in the abundance ratios of the 4 Asp isomers during a human lifespan. This result is consistent with the fact that isomerized Asp residues accumulate in proteins during the ageing process.


Journal of Chromatography B | 2011

UV B-irradiation enhances the racemization and isomerizaiton of aspartyl residues and production of Nɛ-carboxymethyl lysine (CML) in keratin of skin☆

Yuhei Mori; Kenzo Aki; Katsunori Kuge; Shingo Tajima; Natsuko Yamanaka; Yuichi Kaji; Naoki Yamamoto; Ryoji Nagai; Hanako Yoshii; Norihiko Fujii; Masami Watanabe; Tadatoshi Kinouchi; Noriko Fujii

UV-B irradiation is one of the risk factors in age-related diseases. We have reported that biologically uncommon D-β-Asp residues accumulate in proteins from sun-exposed elderly human skin. A previous study also reported that carboxymethyl lysine (CML; one of the advanced glycation end products (AGEs)) which is produced by the oxidation of glucose and peroxidation of lipid, also increases upon UV B irradiation. The formation of D-β-Asp and CML were reported as the alteration of proteins in UV B irradiated skin, independently. In this study, in order to clarify the relationship between the formation of D-β-Asp and CML, immunohistochemical analysis using anti-D-β-Asp containing peptide antibodies and anti-CML antibodies was performed in UV B irradiated mice. Immunohistochemical analyses clearly indicated that an anti-D-β-Asp containing peptide antibody and anti-CML antibody reacted at a common area in UV B irradiated skin. Western blot analyses of the proteins isolated from UV B irradiated skin demonstrated that proteins of 50-70 kDa were immunoreactive towards antibodies for both D-β-Asp containing peptide and CML. These proteins were identified by proteomic analysis as members of the keratin families including keratin-1, keratin-6B, keratin-10, and keratin-14.


Analytical Chemistry | 2015

Rapid survey of four Asp isomers in disease-related proteins by LC-MS combined with commercial enzymes.

Hiroki Maeda; Takumi Takata; Norihiko Fujii; Hiroaki Sakaue; Satoru Nirasawa; Saori Takahashi; Hiroshi Sasaki; Noriko Fujii

Until relatively recently, it was considered that D-amino acids were excluded from living systems except for the cell wall of microorganisms. However, D-aspartate residues have now been detected in long-lived proteins from various tissues of elderly humans. Formation of D-aspartate in proteins induces aggregation and loss of function, leading to age-related disorders such as cataracts and Alzheimer disease. A recent study used LC-MS to analyze isomers of Asp residues in proteins precisely without complex purification of the proteins. However, to identify the four Asp isomers (Lα, Lβ, Dβ, and Dα) on the chromatogram, it was necessary to synthesize reference peptides containing the four different Asp isomers as standards. Here, we describe a method for rapidly and comprehensively identifying Asp isomers in proteins using a combination of LC-MS and commercial enzymes without synthesizing reference peptides. The protein sample is treated with trypsin, trypsin plus Asp-N, trypsin plus PIMT, trypsin plus paenidase, and the resulting peptides are applied to LC-MS. Because Asp-N hydrolyzes peptide bonds on the N-terminus of only Lα-Asp residues, it differentiates peptides containing Lα-Asp from those containing the other three isomers. Similarly, PIMT recognizes only peptides containing Lβ-Asp residues, and paenidase internally cleaves the C-terminus of Dα-Asp residues. This approach was successfully applied to the analysis of all tryptic peptides in aged lens. The comprehensive quantitative data of Asp isomer formation in age-related proteins obtained via this method might be used as biomarkers of age-related disease.


Amino Acids | 2010

Influence of Lβ-, Dα- and Dβ-Asp isomers of the Asp-76 residue on the properties of αA-crystallin 70-88 peptide.

Noriko Fujii; Norihiko Fujii; Masashi Kida; Tadatoshi Kinouchi

Proteins have been considered to consist exclusively of l-amino acids in living tissues. However, our previous studies showed that two specific aspartyl (Asp) residues in αA- and αB-crystallins from human eye lenses invert to the d-isomers to a high degree during aging. The reaction is also accompanied by isomerization into a form containing β-Asp (isoaspartate) residues. The appearance of d- and β-Asp in a protein potentially induces large changes to the higher order structure of the protein as well as to its function. However, it remains unclear whether the formation of the Asp isomer is the direct trigger of the change to the higher order structure and function. In this study, in order to clarify the effect of the inversion to d-isomers in a protein, we synthesized peptides corresponding to the 70–88 (KFVIFLDVKHFSPEDLTVK) fragment of human αA-crystallin and its corresponding diastereoisomers in which lα-Asp was replaced with lβ-Asp, dα-Asp, and dβ-Asp at position 76 and compared their biochemical properties with that of normal peptide. The peptides containing abnormal isomers (lβ-Asp, dα-Asp, and dβ-Asp residues, respectively) were more hydrophilic than the normal peptide (containing lα-Asp), lost β-sheet structure and changed to random structures. The normal peptide promoted the aggregation of insulin while the other three isomers suppressed the aggregation of insulin. This is the first evidence that a single substitution of an Asp isomer in a peptide induces a large change to the properties of the peptide.


Biochimica et Biophysica Acta | 2016

Isomerization of aspartyl residues in crystallins and its influence upon cataract

Noriko Fujii; Takumi Takata; Norihiko Fujii; Kenzo Aki

BACKGROUND Age-related cataracts, which probably form due to insolubilization of lens proteins, can lead to loss of vision. Although the exact reason is unknown, lens protein aggregation may be triggered by increases in PTMs such as D-β-, L-β- and D-α-Asp isomers. These isomers have been observed in aged lens; however, there have been few quantitative and site-specific studies owing to the lack of a quick and precise method for distinguishing between D- and L-Asp in a peptide or protein. SCOPE OF REVIEW We describe a new method for detecting peptides containing Asp isomers at individual sites in any protein by using an LC-MS/MS system combined with commercial enzymes that specifically react with different isomers. We also summarize current data on the effect of Asp isomerization on lens crystallins. MAJOR CONCLUSIONS The new technique enabled the analysis of isomers of Asp residues in lens proteins precisely and quickly. An extensive proportion of Asp isomerization was observed at all Asp sites of crystallins in the insoluble fraction of aged lens. In addition, d-amino acid substitutions in crystallin-mimic peptides showed altered structural formation and function. These results indicate that isomerization of Asp residues affects the stability, structure and inter-subunit interaction of lens crystallins, which will induce crystallin aggregation and insolubilization, disrupt the associated functions, and ultimately contribute to the onset of senile cataract formation. GENERAL SIGNIFICANCE The mechanism underlying the onset of age-related diseases may involve isomerization, whereby D-amino acids are incorporated in the L-amino acid world of life. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.


Biochimica et Biophysica Acta | 2015

Alpha B- and βA3-crystallins containing d-Aspartic acids exist in a monomeric state

Hiroaki Sakaue; Takumi Takata; Norihiko Fujii; Hiroshi Sasaki; Noriko Fujii

Crystallin stability and subunit-subunit interaction are essential for eye lens transparency. There are three types of crystallins in lens, designated as α-, β-, and γ-crystallins. Alpha-crystallin is a hetero-polymer of about 800kDa, consisting of 35-40 subunits of two different αA- and αB-subunits, each of 20kDa. The β/γ-crystallin superfamily comprises oligomeric β-crystallin (2-6 subunits) and monomeric γ-crystallin. Since lens proteins have very long half-lives, they undergo numerous post-translational modifications including racemization, isomerization, deamidation, oxidation, glycation, and truncation, which may decrease crystallin solubility and ultimately cause cataract formation. Racemization and isomerization of aspartyl (Asp) residues have been detected only in polymeric α- and oligomeric β-crystallin, while the situation in monomeric γ-crystallin has not been studied. Here, we investigated the racemization and isomerization of Asp in the γ-crystallin fraction of elderly donors. The results show that Asp residues of γS-, γD- and γC-crystallins were not racemized and isomerized. However, strikingly, we found that a portion of αB-crystallin and βA3-crystallin moved to the lower molecular weight fraction which is the same size of γ-crystallin. In those fractions, Asp-96 of αB-crystallin and Asp-37 of βA3-crystallin were highly inverted, which do not occur in the native lens higher molecular weight fraction. Our results indicate the possibility that the inversion of Asp residues may induce dissociation of αB- and βA3-crystallins from the polymeric and oligomeric states. This is the first report that stereoinversion of amino acids disturbs lens protein assembly in aged human lens.

Collaboration


Dive into the Norihiko Fujii's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroaki Sakaue

International University of Health and Welfare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenzo Aki

Himeji Dokkyo University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Sasaki

Kanazawa Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge