Norihiro Haraguchi
University of Tsukuba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Norihiro Haraguchi.
Clinical Cancer Research | 2009
Shinsuke Homma; Yukio Ishii; Yuko Morishima; Tadahiro Yamadori; Yosuke Matsuno; Norihiro Haraguchi; Norihiro Kikuchi; Hiroaki Satoh; Tohru Sakamoto; Nobuyuki Hizawa; Ken Itoh; Masayuki Yamamoto
Purpose: NF-E2-related factor 2 (Nrf2), a key transcription regulator for antioxidant and detoxification enzymes, is abundantly expressed in cancer cells. In this study, therefore, the role of Nrf2 in cancer cell proliferation and resistance to anticancer drugs was investigated. Experimental Design: We used three human lung cancer cell lines with different degrees of Nrf2 activation: Nrf2 was highly activated in A549 cells, slightly activated in NCI-H292 cells, and not activated in LC-AI cells under unstimulated conditions. Result: A549 cells showed higher resistance to cisplatin compared with NCI-H292 and LC-AI cells. The resistance to cisplatin was significantly inhibited in A549 but not in NCI-H292 or LC-AI cells by knockdown of Nrf2 with its specific small interfering RNA (Nrf2-siRNA). The cell proliferation was also most prominently inhibited in A549 cells by treatment with Nrf2-siRNA. In A549 cells, the expression of self-defense genes, such as antioxidant enzymes, phase II detoxifying enzymes, and drug efflux pumps, was significantly reduced by Nrf2-siRNA concomitant with a reduction of the cellular glutathione level. The degree of DNA crosslink and apoptosis after treatment with cisplatin was significantly elevated in A549 cells by Nrf2-siRNA. Knockdown of Nrf2 arrested the cell cycle at G1 phase with a reduction of the phosphorylated form of retinoblastoma protein in A549 and NCI-H292 cells but not in LC-AI cells. Conclusion: These results indicate that the Nrf2 system is essential for both cancer cell proliferation and resistance to anticancer drugs. Thus, Nrf2 might be a potential target to enhance the effect of anticancer drugs.
Respiratory Research | 2010
Norihiro Kikuchi; Yukio Ishii; Yuko Morishima; Yuichi Yageta; Norihiro Haraguchi; Ken Itoh; Masayuki Yamamoto; Nobuyuki Hizawa
BackgroundPulmonary fibrosis is a progressive and lethal disorder. Although the precise mechanisms of pulmonary fibrosis are not fully understood, oxidant/antioxidant and Th1/Th2 balances may play an important role in many of the processes of inflammation and fibrosis. The transcription factor Nrf2 acts as a critical regulator for various inflammatory and immune responses by controlling oxidative stress. We therefore investigated the protective role of Nrf2 against the development of pulmonary fibrosis.MethodsTo generate pulmonary fibrosis, both wild-type C57BL/6 mice and Nrf2-deficient mice of the same background were administered bleomycin intratracheally.ResultsThe survival of Nrf2-deficient mice after bleomycin administration was significantly lower than that of wild-type mice. The degree of bleomycin-induced initial pulmonary inflammation and pulmonary fibrosis was much more severe in Nrf2-deficient mice than in wild-type mice. The expression of antioxidant enzymes and phase II detoxifying enzymes was significantly reduced in the lungs of Nrf2-deficient mice, concomitant with an elevation of lung 8-isoprostane level, compared with wild-type mice. The expression of Th2 cytokines, such as interleukin-4 and interleukin-13, was significantly elevated in the lungs of Nrf2-deficient mice with an increase in the number of Th2 cells that express GATA-binding protein 3.ConclusionsThe results indicated that Nrf2 protects against the development of pulmonary fibrosis by regulating the cellular redox level and lung Th1/Th2 balance. Thus, Nrf2 might be an important genetic factor in the determination of susceptibility to pulmonary fibrosis.
American Journal of Respiratory Cell and Molecular Biology | 2011
Norihiro Kikuchi; Yukio Ishii; Yuko Morishima; Yuichi Yageta; Norihiro Haraguchi; Tadahiro Yamadori; Hironori Masuko; Tohru Sakamoto; Toru Yanagawa; Eiji Warabi; Tetsuro Ishii; Nobuyuki Hizawa
Oxidative stress plays an important role in the pathogenesis of acute lung injury and pulmonary fibrosis. Peroxiredoxin (Prx) I is a cellular antioxidant enzyme induced under stress conditions. In the present study, the protective effects of Prx I on the development of bleomycin-induced acute pulmonary inflammation and pulmonary fibrosis were investigated using Prx I-deficient mice. Survival of Prx I-deficient mice after bleomycin administration was significantly lower than that of wild-type mice, corresponding with enhanced acute pulmonary inflammation and fibrosis. The level of inflammatory cytokines and chemokines, such as TNF-α, macrophage inflammatory protein-2, and monocyte chemotactic protein-1, was significantly elevated in the bronchoalveolar lavage fluid of Prx I-deficient mice after bleomycin administration. Furthermore, the level of 8-isoprostane, an oxidative stress marker, and the concentration and alveolar macrophage expression of macrophage migration inhibitory factor were elevated in the lungs of Prx I-deficient mice after bleomycin administration. The exacerbation of bleomycin-induced pulmonary inflammation and fibrosis in Prx I-deficient mice was inhibited by treatment with N-acetyl-L-cysteine, a radical scavenger, or with (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester, a tautomerase inhibitor of macrophage migration inhibitory factor. These findings suggest that mice lacking Prx I are highly susceptible to bleomycin-induced pulmonary inflammation and fibrosis because of increases in pulmonary oxidant levels and macrophage migration inhibitory factor activity in response to bleomycin.
Clinical & Experimental Allergy | 2011
Takumi Kiwamoto; Yukio Ishii; Yuko Morishima; Keigyou Yoh; Norihiro Kikuchi; Norihiro Haraguchi; Hironori Masuko; Mio Kawaguchi; Akihiro Nomura; T. Sakamoto; Satoru Takahashi; Nobuyuki Hizawa
Background We demonstrated previously that GATA‐3 overexpression markedly enhanced allergen‐induced airway inflammation and airway remodelling, including subepithelial fibrosis, and smooth muscle cell hyperplasia, in transgenic mice.
Infection and Immunity | 2010
Norihiro Haraguchi; Yukio Ishii; Yuko Morishima; Keigyou Yoh; Yosuke Matsuno; Norihiro Kikuchi; Tohru Sakamoto; Satoru Takahashi; Nobuyuki Hizawa
ABSTRACT Candida species are the most common source of nosocomial invasive fungal infections. Previous studies have indicated that T-helper immune response is the critical host factor for susceptibility to Candida infection. The transcription factor GATA-3 is known as the master regulator for T-helper type 2 (Th2) differentiation. We therefore investigated the role of GATA-3 in the host defense against systemic Candida infection using GATA-3-overexpressing transgenic mice. The survival of GATA-3-overexpressing mice after Candida infection was significantly lower than that of wild-type mice. Candida outgrowth was significantly increased in the kidneys of GATA-3-overexpressing mice, compared with wild-type mice. The levels of various Th2 cytokines, including interleukin-4 (IL-4), IL-5, and IL-13, were significantly higher while the level of Th1 cytokine gamma interferon was significantly lower in the splenocytes of GATA-3-overexpressing mice after Candida infection. Recruitment of macrophages into the peritoneal cavity in response to Candida infection and their phagocytic activity were significantly lower in GATA-3-overexpressing mice than in wild-type mice. Exogenous administration of gamma interferon to GATA-3-overexpressing mice significantly reduced Candida outgrowth in the kidney and thus increased the survival rate. Administration of gamma interferon also increased the recruitment of macrophages into the peritoneal cavity in response to Candida infection. These results indicate that overexpression of GATA-3 modulates macrophage antifungal activity and thus enhances the susceptibility to systemic Candida infection, possibly by reducing the production of gamma interferon in response to Candida infection.
European Journal of Immunology | 2016
Norihiro Haraguchi; Norihiro Kikuchi; Yuko Morishima; Masashi Matsuyama; Hirofumi Sakurai; Akira Shibuya; Kazuko Shibuya; Masaru Taniguchi; Yukio Ishii
Invariant NKT (iNKT) cells play an important role in a variety of antimicrobial immune responses due to their ability to produce high levels of immune‐modulating cytokines. Here, we investigated the role of iNKT cells in host defense against candidiasis using Jα18‐deficient mice (Jα18−/−), which lack iNKT cells. Jα18−/− mice were more resistant to the development of lethal candidiasis than wild‐type (WT) mice. In contrast, treatment of WT mice with the iNKT cell activating ligand α‐galactosylceramide markedly enhanced their mortality after infection with Candida albicans. Serum IL‐10 levels were significantly elevated in WT mice in response to infection with C. albicans. Futhermore, IL‐10 production increased after in vitro coculture of peritoneal macrophages with iNKT cells and C. albicans. The numbers of peritoneal macrophages, the production of IL‐1β and IL‐18, and caspase‐1 activity were also significantly elevated in Jα18−/− mice after infection with C. albicans. The adoptive transfer of iNKT cells or exogenous administration of IL‐10 into Jα18−/− reversed susceptibility to candidiasis to the level of WT mice. These results suggest that activation of iNKT cells increases the initial severity of C. albicans infection, most likely mediated by IL‐10 induced modulation of macrophage antifungal activity.
American Journal of Respiratory and Critical Care Medicine | 2007
Yosuke Matsuno; Yukio Ishii; Keigyou Yoh; Yuko Morishima; Norihiro Haraguchi; Norihiro Kikuchi; Takashi Iizuka; Takumi Kiwamoto; Shinsuke Homma; Akihiro Nomura; Tohru Sakamoto; Morio Ohtsuka; Nobuyuki Hizawa; Satoru Takahashi
Clinical Lung Cancer | 2007
Norihiro Haraguchi; Hiroaki Satoh; Norihiro Kikuchi; Katsunori Kagohashi; Hiroichi Ishikawa; Morio Ohtsuka
Journal of Thoracic Imaging | 2005
Yoshiko Kaneko; Hiroaki Satoh; Norihiro Haraguchi; Shigehiko Imagawa; Kiyohisa Sekizawa
Clinical Oncology | 2004
Norihiro Haraguchi; Y. Yamamoto; K. Sasaki; Hiroaki Satoh; Kiyohisa Sekizawa