Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norihiro Nishimura is active.

Publication


Featured researches published by Norihiro Nishimura.


BMC Physiology | 2010

Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity

Takehiko Oka; Yuhei Nishimura; Liqing Zang; Minoru Hirano; Yasuhito Shimada; Zhipeng Wang; Noriko Umemoto; Junya Kuroyanagi; Norihiro Nishimura; Toshio Tanaka

BackgroundObesity is a multifactorial disorder influenced by genetic and environmental factors. Animal models of obesity are required to help us understand the signaling pathways underlying this condition. Zebrafish possess many structural and functional similarities with humans and have been used to model various human diseases, including a genetic model of obesity. The purpose of this study was to establish a zebrafish model of diet-induced obesity (DIO).ResultsZebrafish were assigned into two dietary groups. One group of zebrafish was overfed with Artemia (60 mg dry weight/day/fish), a living prey consisting of a relatively high amount of fat. The other group of zebrafish was fed with Artemia sufficient to meet their energy requirements (5 mg dry weight/day/fish). Zebrafish were fed under these dietary protocols for 8 weeks. The zebrafish overfed with Artemia exhibited increased body mass index, which was calculated by dividing the body weight by the square of the body length, hypertriglyceridemia and hepatosteatosis, unlike the control zebrafish. Calorie restriction for 2 weeks was applied to zebrafish after the 8-week overfeeding period. The increased body weight and plasma triglyceride level were improved by calorie restriction. We also performed comparative transcriptome analysis of visceral adipose tissue from DIO zebrafish, DIO rats, DIO mice and obese humans. This analysis revealed that obese zebrafish and mammals share common pathophysiological pathways related to the coagulation cascade and lipid metabolism. Furthermore, several regulators were identified in zebrafish and mammals, including APOH, IL-6 and IL-1β in the coagulation cascade, and SREBF1, PPARα/γ, NR1H3 and LEP in lipid metabolism.ConclusionWe established a zebrafish model of DIO that shared common pathophysiological pathways with mammalian obesity. The DIO zebrafish can be used to identify putative pharmacological targets and to test novel drugs for the treatment of human obesity.


Scientific Reports | 2015

Eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis

Masanori Hiramitsu; Yasuhito Shimada; Junya Kuroyanagi; Takashi Inoue; Takao Katagiri; Liqing Zang; Yuhei Nishimura; Norihiro Nishimura; Toshio Tanaka

Lemon (Citrus limon) contains various bioactive flavonoids, and prevents obesity and obesity-associated metabolic diseases. We focused on eriocitrin (eriodictyol 7-rutinoside), a powerful antioxidative flavonoid in lemon with lipid-lowering effects in a rat model of high-fat diet. To investigate the mechanism of action of eriocitrin, we conducted feeding experiments on zebrafish with diet-induced obesity. Oral administration of eriocitrin (32 mg/kg/day for 28 days) improved dyslipidaemia and decreased lipid droplets in the liver. DNA microarray analysis revealed that eriocitrin increased mRNA of mitochondrial biogenesis genes, such as mitochondria transcription factor, nuclear respiratory factor 1, cytochrome c oxidase subunit 4, and ATP synthase. In HepG2 cells, eriocitrin also induced the corresponding orthologues, and reduced lipid accumulation under conditions of lipid loading. Eriocitrin increased mitochondrial size and mtDNA content, which resulted in ATP production in HepG2 cells and zebrafish. In summary, dietary eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis.


BMC Neuroscience | 2010

In vivo imaging of zebrafish retinal cells using fluorescent coumarin derivatives

Kohei Watanabe; Yuhei Nishimura; Takehiko Oka; Tsuyoshi Nomoto; Tetsuo Kon; Taichi Shintou; Minoru Hirano; Yasuhito Shimada; Noriko Umemoto; Junya Kuroyanagi; Zhipeng Wang; Zi Zhang; Norihiro Nishimura; Takeshi Miyazaki; Takeshi Imamura; Toshio Tanaka

BackgroundThe zebrafish visual system is a good research model because the zebrafish retina is very similar to that of humans in terms of the morphologies and functions. Studies of the retina have been facilitated by improvements in imaging techniques. In vitro techniques such as immunohistochemistry and in vivo imaging using transgenic zebrafish have been proven useful for visualizing specific subtypes of retinal cells. In contrast, in vivo imaging using organic fluorescent molecules such as fluorescent sphingolipids allows non-invasive staining and visualization of retinal cells en masse. However, these fluorescent molecules also localize to the interstitial fluid and stain whole larvae.ResultsWe screened fluorescent coumarin derivatives that might preferentially stain neuronal cells including retinal cells. We identified four coumarin derivatives that could be used for in vivo imaging of zebrafish retinal cells. The retinas of living zebrafish could be stained by simply immersing larvae in water containing 1 μg/ml of a coumarin derivative for 30 min. By using confocal laser scanning microscopy, the lamination of the zebrafish retina was clearly visualized. Using these coumarin derivatives, we were able to assess the development of the zebrafish retina and the morphological abnormalities induced by genetic or chemical interventions. The coumarin derivatives were also suitable for counter-staining of transgenic zebrafish expressing fluorescent proteins in specific subtypes of retinal cells.ConclusionsThe coumarin derivatives identified in this study can stain zebrafish retinal cells in a relatively short time and at low concentrations, making them suitable for in vivo imaging of the zebrafish retina. Therefore, they will be useful tools in genetic and chemical screenings using zebrafish to identify genes and chemicals that may have crucial functions in the retina.


Zebrafish | 2013

A Novel, Reliable Method for Repeated Blood Collection from Aquarium Fish

Liqing Zang; Yasuhito Shimada; Yuhei Nishimura; Toshio Tanaka; Norihiro Nishimura

Collecting blood from laboratory animals is necessary for a wide variety of scientific studies, but the small size of the zebrafish makes this common procedure challenging. We developed a novel, minimally invasive method to collect repeated blood samples from adult zebrafish. This method minimizes trauma to the zebrafish and yields a low mortality rate of 2.3%. The maximum volume of blood that can be collected using this technique is approximately 2% of body weight. To avoid blood loss anemia and hemorrhagic death, we recommend that the total blood sample volume collected over repeat bleeds should be ≤0.4% of body weight per week, and ≤1% of body weight per 2 weeks. Additionally, we applied this method to the study of zebrafish glycolipid metabolism by measuring blood glucose and plasma triacylglyceride levels weekly over a 5-week period in both control and overfed zebrafish. The overfed fish developed significantly increased fasting blood glucose levels compared with normally fed fish. This new method of blood collection is essential for zebrafish or other small aquarium fish research requiring repeated blood samples, and increases the utility of the zebrafish as a model animal in hematological studies of human diseases.


Zebrafish | 2011

A Novel Protocol for the Oral Administration of Test Chemicals to Adult Zebrafish

Liqing Zang; Daizo Morikane; Yasuhito Shimada; Toshio Tanaka; Norihiro Nishimura

A novel protocol using gluten as a carrier material was developed to administer chemicals to adult zebrafish, per os (p.o.). To evaluate the capacity of gluten to retain chemicals, we prepared gluten granules containing eight types of chemicals with different Log P(ow) values and immersed them in water. Less than 5% of chemicals were eluted from gluten granules within 5 min, a standard feeding time for zebrafish. Although retention capability was dependent on the hydrophilicity and hydrophobicity of the chemicals, the gluten granules retained 62%-99% of the total amount of chemical, even after immersion in water for 60 min. Vital staining dyes, such as 4-Di-2-Asp and Nile red, administered p.o., were delivered into the gastrointestinal tract where they were digested and secreted. Subsequently, we conducted a pharmacokinetic study of oral administration of felbinac and confirmed that it was successfully delivered into the blood of zebrafish. This indicates that chemicals administered using gluten granules are satisfactorily absorbed from the digestive tract and delivered into the metabolic system. The absorption, distribution, and pharmacokinetics of chemicals given by oral administration were also compared with those of chemicals given by alternative administration routes such as intraperitoneal injection and exposure to chemical solution.


Scientific Reports | 2017

Development of a Novel Zebrafish Model for Type 2 Diabetes Mellitus

Liqing Zang; Yasuhito Shimada; Norihiro Nishimura

Obesity is a major cause of type 2 diabetes mellitus (T2DM) in mammals. We have previously established a zebrafish model of diet-induced obesity (DIO zebrafish) by overfeeding Artemia. Here we created DIO zebrafish using a different method to induce T2DM. Zebrafish were overfed a commercially available fish food using an automated feeding system. We monitored the fasting blood glucose levels in the normal-fed group (one feed/day) and overfed group (six feeds/day) over an 8-week period. The fasting blood glucose level was significantly increased in DIO zebrafish compared with that of normal-fed zebrafish. Intraperitoneal and oral glucose tolerance tests showed impaired glucose tolerance by overfeeding. Insulin production, which was determined indirectly by measuring the EGFP signal strength in overfed Tg(−1.0ins:EGFP)sc1 zebrafish, was increased in DIO zebrafish. The anti-diabetic drugs metformin and glimepiride ameliorated hyperglycaemia in the overfed group, suggesting that this zebrafish can be used as a model of human T2DM. Finally, we conducted RNA deep sequencing and found that the gene expression profiling of liver-pancreas revealed pathways common to human T2DM. In summary, we developed a zebrafish model of T2DM that shows promise as a platform for mechanistic and therapeutic studies of diet-induced glucose intolerance and insulin resistance.


Molecular Biotechnology | 2013

Fluorescent-Based Methods for Gene Knockdown and Functional Cardiac Imaging in Zebrafish

Noriko Umemoto; Yuhei Nishimura; Yasuhito Shimada; Yukiko Yamanaka; Seiya Kishi; Saki Ito; Kana Okamori; Yuuki Nakamura; Junya Kuroyanagi; Zi Zhang; Liqing Zang; Zhipeng Wang; Norihiro Nishimura; Toshio Tanaka

A notable advantage of zebrafish as a model organism is the ease of gene knockdown using morpholino antisense oligonucleotide (MO). However, zebrafish morphants injected with MO for a target protein often show heterogeneous phenotypes, despite controlling the injection volume of the MO solution in all embryos. We developed a method for estimating the quantity of MO injected into each living morphant, based on the co-injection of a control MO labeled with the fluorophore lissamine. By applying this method for knockdown of cardiac troponin T (tnnt2a) in zebrafish, we could efficiently select the partial tnnt2a-depleted zebrafish with a decreased heart rate and impairment of cardiac contraction. To investigate cardiac impairment of the tnnt2a morphant, we performed fluorescent cardiac imaging using Bodipy-ceramide. Cardiac image analysis showed moderate reduction of tnnt2a impaired diastolic distensibility and decreased contraction and relaxation velocities. To the best of our knowledge, this is the first report to analyze the role of tnnt2a in cardiac function in tnnt2a-depleted living animals. Our combinatorial approach can be applied for analyzing the molecular function of any protein associated with human cardiac diseases.


Bioscience, Biotechnology, and Biochemistry | 2016

Ginger hexane extract suppresses RANKL-induced osteoclast differentiation

Suguru Ito; Akihiro Ohmi; Akiyo Sakamiya; Takeo Yano; Katsuzumi Okumura; Norihiro Nishimura; Kazuhiro Kagontani

Osteoporosis is a debilitating disease caused by decreased bone density. Compounds with anti-osteoclastic activity, such as bisphosphonates, may help in the prevention and treatment of osteoporosis. Herein, we determined the inhibitory effects of ginger hexane extract (GHE) on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in RAW264.7 cells. The results showed that GHE (1) suppressed osteoclast differentiation and the formation of actin rings; (2) inhibited the expression of Nfatc1, a master transcriptional factor for osteoclast differentiation, in a dose-dependent manner (10–20 μg/mL); and (3) inhibited other osteoclastogenesis-related genes, such as Oscar, Dc-stamp, Trap, and Mmp9. These findings suggest that GHE may be used to prevent and treat osteoporosis by inhibiting osteoclast differentiation. Graphical abstract Ginger hexane extract (GHE) suppresses RANKL-induced osteoclast differentiation.


Microbiology and Immunology | 2013

Specific and sensitive detection of Alcaligenes species from an agricultural environment

Miyo Nakano; Masumi Niwa; Norihiro Nishimura

A quantitative real‐time PCR assay to specifically detect and quantify the genus Alcaligenes in samples from the agricultural environment, such as vegetables and farming soils, was developed. The minimum detection sensitivity was 106 fg of pure culture DNA, corresponding to DNA extracted from two cells of Alcaligenes faecalis. To evaluate the detection limit of A. faecalis, serially diluted genomic DNA from this organism was mixed with DNA extracted from soil and vegetables and then a standard curve was constructed. It was found that Alcaligenes species are present in the plant phytosphere at levels 102–104 times lower than those in soil. The approach presented here will be useful for tracking or quantifying species of the genus Alcaligenes in the agricultural environment.


Nutrients | 2018

Novel Anti-Obesity Properties of Palmaria mollis in Zebrafish and Mouse Models

Hiroko Nakayama; Yasuhito Shimada; Liqing Zang; Masahiro Terasawa; Kaoru Nishiura; Koichi Matsuda; Charles Toombs; Chris Langdon; Norihiro Nishimura

(1) Background: The red seaweed Palmaria mollis (PM), which has a bacon-like taste, is increasingly being included in Western diets. In this study, we evaluate anti-obesity effects of PM using diet-induced obese (DIO) zebrafish and mice models. (2) Methods: We fed PM-containing feed to DIO-zebrafish and mice, and evaluated the anti-obesity effects We also analyzed gene expression changes in their liver and visceral adipose tissues (VAT). (3) Results: PM ameliorated several anti-obesity traits in both animals, including dyslipidaemia, hepatic steatosis, and visceral adiposity. In liver tissues of DIO-zebrafish and mice, PM upregulated gene expressions involved in peroxisome proliferator-activated receptor alpha (PPARA) pathways, and downregulated peroxisome proliferator-activated receptor gamma (PPARG) pathways, suggesting that the lipid-lowering effect of PM might be caused by activation of beta-oxidation and inhibition of lipogenesis. In VAT, PM downregulated genes involved in early and late adipocyte differentiation in zebrafish, but not in mice. (4) Conclusions: We have demonstrated that PM can prevent hepatic steatosis and visceral adiposity for the first time. Dietary supplementation of PM as a functional food may be suitable for obesity prevention and reduction in the prevalence of obesity-related diseases.

Collaboration


Dive into the Norihiro Nishimura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takeo Yano

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge