Norihiro Sudou
Nara Institute of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Norihiro Sudou.
Development | 2012
Norihiro Sudou; Shinji Yamamoto; Hajime Ogino; Masanori Taira
How multiple developmental cues are integrated on cis-regulatory modules (CRMs) for cell fate decisions remains uncertain. The Spemann–Mangold organizer in Xenopus embryos expresses the transcription factors Lim1/Lhx1, Otx2, Mix1, Siamois (Sia) and VegT. Reporter analyses using sperm nuclear transplantation and DNA injection showed that cerberus (cer) and goosecoid (gsc) are activated by the aforementioned transcription factors through CRMs conserved between X. laevis and X. tropicalis. ChIP-qPCR analysis for the five transcription factors revealed that cer and gsc CRMs are initially bound by both Sia and VegT at the late blastula stage, and subsequently bound by all five factors at the gastrula stage. At the neurula stage, only binding of Lim1 and Otx2 to the gsc CRM, among others, persists, which corresponds to their co-expression in the prechordal plate. Based on these data, together with detailed expression pattern analysis, we propose a new model of stepwise formation of the organizer, in which (1) maternal VegT and Wnt-induced Sia first bind to CRMs at the blastula stage; then (2) Nodal-inducible Lim1, Otx2, Mix1 and zygotic VegT are bound to CRMs in the dorsal endodermal and mesodermal regions where all these genes are co-expressed; and (3) these two regions are combined at the gastrula stage to form the organizer. Thus, the in vivo dynamics of multiple transcription factors highlight their roles in the initiation and maintenance of gene expression, and also reveal the stepwise integration of maternal, Nodal and Wnt signaling on CRMs of organizer genes to generate the organizer.
Nature Communications | 2014
Yuuri Yasuoka; Yutaka Suzuki; Shuji Takahashi; Haruka Someya; Norihiro Sudou; Yoshikazu Haramoto; Ken W.Y. Cho; Makoto Asashima; Sumio Sugano; Masanori Taira
Head specification by the head-selector gene, orthodenticle (otx), is highly conserved among bilaterian lineages. However, the molecular mechanisms by which Otx and other transcription factors (TFs) interact with the genome to direct head formation are largely unknown. Here we employ ChIP-seq and RNA-seq approaches in Xenopus tropicalis gastrulae and find that occupancy of the corepressor, TLE/Groucho, is a better indicator of tissue-specific cis-regulatory modules (CRMs) than the coactivator p300, during early embryonic stages. On the basis of TLE binding and comprehensive CRM profiling, we define two distinct types of Otx2- and TLE-occupied CRMs. Using these devices, Otx2 and other head organizer TFs (for example, Lim1/Lhx1 (activator) or Goosecoid (repressor)) are able to upregulate or downregulate a large battery of target genes in the head organizer. An underlying principle is that Otx marks target genes for head specification to be regulated positively or negatively by partner TFs through specific types of CRMs.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Eugenia M. del Pino; Michael Venegas-Ferrín; Andrés Romero-Carvajal; Paola C. Montenegro-Larrea; Natalia Sáenz-Ponce; Iván M. Moya; Ingrid Alarcón; Norihiro Sudou; Shinji Yamamoto; Masanori Taira
The current understanding of Xenopus laevis development provides a comparative background for the analysis of frog developmental modes. Our analysis of development in various frogs reveals that the mode of gastrulation is associated with developmental rate and is unrelated to egg size. In the gastrula of the rapidly developing embryos of the foam-nesting frogs Engystomops coloradorum and Engystomops randi, archenteron and notochord elongation overlapped with involution at the blastopore lip, as in X. laevis embryos. In embryos of dendrobatid frogs and in the frog without tadpoles Eleutherodactylus coqui, which develop somewhat more slowly than X. laevis, involution and archenteron elongation concomitantly occurred during gastrulation; whereas elongation of the notochord and, therefore, dorsal convergence and extension, occurred in the postgastrula. In contrast, in the slow developing embryos of the marsupial frog Gastrotheca riobambae, only involution occurred during gastrulation. The processes of archenteron and notochord elongation and convergence and extension were postgastrulation events. We produced an Ab against the homeodomain protein Lim1 from X. laevis as a tool for the comparative analysis of development. By the expression of Lim1, we were able to identify the dorsal side of the G. riobambae early gastrula, which otherwise was difficult to detect. Moreover, the Lim1 expression in the dorsal lip of the blastopore and notochord differed among the studied frogs, indicating variation in the timing of developmental events. The variation encountered gives evidence of the modular character of frog gastrulation.
Nature Communications | 2012
Haruki Ochi; Tomoko Tamai; Hiroki Nagano; Akane Kawaguchi; Norihiro Sudou; Hajime Ogino
Recent studies underscore a role for the differential degeneration of enhancers in the evolutionary diversification of paralogue expression. However, no one has reported evidence for the involvement of innovative cis-regulatory changes. Here we show that silencer innovation diversified expression of the vertebrate paralogues, pax2 and pax8. pax2 shows multi-tissue expression, as does the ancestral amphioxus orthologue, pax2/5/8, whereas pax8 expression localizes to a subset of pax2-expressing tissues. We reveal that both pax2 and pax8 retain ancestral enhancers capable of directing pax2-like, multi-tissue expression. However, a silencer within the pax8 proximal promoter suppresses pleiotropic enhancer activity outside the pax8-expressing tissues. In contrast, the combination of the pax2 proximal promoter with either the pax8 or pax2 enhancer recapitulates pax2-like expression, as in the amphioxus pax2/5/8 promoter. We propose that silencer innovation, rather than enhancer degeneration, was crucial for the divergent expression of paralogues with pleiotropic enhancers inherited from their common progenitor.
The International Journal of Developmental Biology | 2010
Michael Venegas-Ferrín; Norihiro Sudou; Masanori Taira; Eugenia M. del Pino
A polyclonal antibody was used to detect the expression of the homeodomain protein Lim1 (Lhx1) in embryos of Xenopus laevis, Engystomops randi, Colostethus machalilla and Gastrotheca riobambae. These frogs belong to four separate families, and have differences in their modes of reproduction and developmental rates. The expression of Lim1 in embryos of these frogs resembled the X. laevis expression pattern. Thus, the dorsal blastopore lip, axial mesoderm, pronephros and certain cells of the central nervous system were Lim1-positive in embryos of all frogs. There were, however, time differences; thus, in the mid-gastrula of the rapidly developing embryos of X. laevis and E. randi, the Lim1 protein was simultaneously detected in the prechordal plate (head organizer) and notochord (trunk organizer). In contrast, only the prechordal plate was Lim1-positive during gastrulation in the slow developing embryos of C. machalilla. The notochord elongated and became Lim1-positive after closure of the blastopore in C. machalilla and G. riobambae embryos. The prechordal plate of G. riobambae embryos could not be clearly detected, as the Lim1-signal remained around the blastopore during gastrulation. These observations indicate that the timing of gene expression at the dorsal blastopore lip in embryos of slow developing frogs differs from that of X. laevis. Moreover, the comparison shows that the developmental processes of the head and trunk organizers are basically separable and become dissociated in embryos of the slow developing frog, C. machalilla.
Genetics | 2017
Bridget D. DeLay; Mark E. Corkins; Hannah L. Hanania; Matthew C. Salanga; Jian Min Deng; Norihiro Sudou; Masanori Taira; Marko E. Horb; Rachel K. Miller
Xenopus laevis is a classic developmental model, but its allotetraploid genome has limited our ability to perform genetic manipulations. The advance of... Studying genes involved in organogenesis is often difficult because many of these genes are also essential for early development. The allotetraploid frog, Xenopus laevis, is commonly used to study developmental processes, but because of the presence of two homeologs for many genes, it has been difficult to use as a genetic model. Few studies have successfully used CRISPR in amphibians, and currently there is no tissue-targeted knockout strategy described in Xenopus. The goal of this study is to determine whether CRISPR/Cas9-mediated gene knockout can be targeted to the Xenopus kidney without perturbing essential early gene function. We demonstrate that targeting CRISPR gene editing to the kidney and the eye of F0 embryos is feasible. Our study shows that knockout of both homeologs of lhx1 results in the disruption of kidney development and function but does not lead to early developmental defects. Therefore, targeting of CRISPR to the kidney may not be necessary to bypass the early developmental defects reported upon disruption of Lhx1 protein expression or function by morpholinos, antisense RNA, or dominant negative constructs. We also establish a control for CRISPR in Xenopus by editing a gene (slc45a2) that when knocked out results in albinism without altering kidney development. This study establishes the feasibility of tissue-specific gene knockout in Xenopus, providing a cost-effective and efficient method for assessing the roles of genes implicated in developmental abnormalities that is amenable to high-throughput gene or drug screening techniques.
The International Journal of Developmental Biology | 2012
Akane Kawaguchi; Haruki Ochi; Norihiro Sudou; Hajime Ogino
The regulated removal of the gene-silencing epigenetic mark, trimethylation of lysine 27 of histone H3 (H3K27me3), has been shown to be critical for tissue-specific activation of developmental genes; however, the extent of embryonic expression of its demethylases, JMJD3 and UTX, has remained unclear. In this study, we investigated the expression of jmjd3 and utx genes in Xenopus embryos in parallel with that of the H3K27 methylase gene, ezh2. At the blastula stage, jmjd3, utx and ezh2 showed similar expression patterns in the animal cap and marginal zone that give rise to the ectoderm and mesoderm, respectively. The three genes maintained similar expression patterns in the neural plate, preplacodal ectoderm and axial mesoderm during the gastrula and neurula stages. Later, expression was maintained in the developing brain and cranial sensory tissues, such as the eye and ear, of tailbud embryos. These findings suggest that the H3K27 demethylases and methylase may function continuously for progressive switching of genetic programs during neural development, a model involving the simultaneous action of both of the demethylases for the de-repression of silent genes and the methylase for the silencing of active genes.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Norihiro Sudou; Andrés Garcés-Vásconez; María A. López-Latorre; Masanori Taira; Eugenia M. del Pino
Significance The transcription factors VegT and Mix1 are markers of the future gut (presumptive endoderm) of the frog Xenopus laevis. VegT and Mix1 proteins localized to the embryo vegetal hemisphere, providing an equivalent identity to the presumptive endoderm in the five frog species that were analyzed. Moreover, VegT protein localized to the animal hemisphere in embryos of all frogs. Similarly, vegt transcripts relocalized to the dorso-animal region of the egg after fertilization in X. laevis, suggesting that vegt may participate in dorsal development. In addition, vegt transcripts relocalized around vegetal nuclei of X. laevis embryos. This relocalization may provide endodermal identity to the large vegetal cells. The results suggest conservation of the developmental strategies for endoderm and dorsal specification in frogs. Protein expression of the transcription factor genes mix1 and vegt characterized the presumptive endoderm in embryos of the frogs Engystomops randi, Epipedobates machalilla, Gastrotheca riobambae, and Eleutherodactylus coqui, as in Xenopus laevis embryos. Protein VegT was detected in the animal hemisphere of the early blastula in all frogs, and only the animal pole was VegT-negative. This finding stimulated a vegt mRNA analysis in X. laevis eggs and embryos. vegt mRNA was detected in the animal region of X. laevis eggs and early embryos, in agreement with the VegT localization observed in the analyzed frogs. Moreover, a dorso-animal relocalization of vegt mRNA occurred in the egg at fertilization. Thus, the comparative analysis indicated that vegt may participate in dorsal development besides its known roles in endoderm development, and germ-layer specification. Zygotic vegt (zvegt) mRNA was detected as a minor isoform besides the major maternal (mvegt) isoform of the X. laevis egg. In addition, α-amanitin–insensitive vegt transcripts were detected around vegetal nuclei of the blastula. Thus, accumulation of vegt mRNA around vegetal nuclei was caused by relocalization rather than new mRNA synthesis. The localization of vegt mRNA around vegetal nuclei may contribute to the identity of vegetal blastomeres. These and previously reportedly localization features of vegt mRNA and protein derive from the master role of vegt in the development of frogs. The comparative analysis indicated that the strategies for endoderm, and dorsal specification, involving vegt and mix1, have been evolutionary conserved in frogs.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Eugenia M. del Pino; Michael Venegas-Ferrín; Andrés Romero-Carvajal; Paola C. Montenegro-Larrea; Natalia Sáenz-Ponce; Iván M. Moya; Ingrid Alarcón; Norihiro Sudou; Shinji Yamamoto; Masato Taira
Archive | 2017
Bridget D. DeLay; Mark E. Corkins; Hannah L. Hanania; Matthew C. Salanga; Jian Min Deng; Norihiro Sudou; Masanori Taira; Marko E. Horb; Rachel K. Miller