Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norihisa Nishimichi is active.

Publication


Featured researches published by Norihisa Nishimichi.


Circulation | 2008

Impact of Plasma Oxidized Low-Density Lipoprotein Removal on Atherosclerosis

Yasushi Ishigaki; Hideki Katagiri; Junhong Gao; Tetsuya Yamada; Junta Imai; Kenji Uno; Yutaka Hasegawa; Keizo Kaneko; Takehide Ogihara; Hisamitsu Ishihara; Yuko Sato; Kenji Takikawa; Norihisa Nishimichi; Haruo Matsuda; Tatsuya Sawamura; Yoshitomo Oka

Background— Several clinical studies of statin therapy have demonstrated that lowering low-density lipoprotein (LDL) cholesterol prevents atherosclerotic progression and decreases cardiovascular mortality. In addition, oxidized LDL (oxLDL) is suggested to play roles in the formation and progression of atherosclerosis. However, whether lowering oxLDL alone, rather than total LDL, affects atherogenesis remains unclear. Methods and Results— To clarify the atherogenic impact of oxLDL, lectin-like oxLDL receptor 1 (LOX-1), an oxLDL receptor, was expressed ectopically in the liver with adenovirus administration in apolipoprotein E–deficient mice at 46 weeks of age. Hepatic LOX-1 expression enhanced hepatic oxLDL uptake, indicating functional expression of LOX-1 in the liver. Although plasma total cholesterol, triglyceride, and LDL cholesterol levels were unaffected, plasma oxLDL was markedly and transiently decreased in LOX-1 mice. In controls, atherosclerotic lesions, detected by Oil Red O staining, were markedly increased (by 38%) during the 4-week period after adenoviral administration. In contrast, atherosclerotic progression was almost completely inhibited by hepatic LOX-1 expression. In addition, plasma monocyte chemotactic protein-1 and lipid peroxide levels were decreased, whereas adiponectin was increased, suggesting decreased systemic oxidative stress. Thus, LOX1 expressed in the livers of apolipoprotein E–deficient mice transiently removes oxLDL from circulating blood and possibly decreases systemic oxidative stress, resulting in complete prevention of atherosclerotic progression despite the persistence of severe LDL hypercholesterolemia and hypertriglyceridemia. Conclusions— OxLDL has a major atherogenic impact, and oxLDL removal is a promising therapeutic strategy against atherosclerosis.


Clinical Chemistry | 2008

Oxidized LDL Receptor LOX-1 Binds to C-Reactive Protein and Mediates Its Vascular Effects

Yoshiko Fujita; Akemi Kakino; Norihisa Nishimichi; Saburo Yamaguchi; Yuko Sato; Sachiko Machida; Luciano Cominacini; Yves Delneste; Haruo Matsuda; Tatsuya Sawamura

BACKGROUND C-reactive protein (CRP) exerts biological activity on vascular endothelial cells. This activity may promote atherothrombosis, but the effects of this activity are still controversial. Lectin-like oxidized LDL receptor-1 (LOX-1), the oxidized LDL receptor on endothelial cells, is involved in endothelial dysfunction induced by oxidized LDL. METHODS We used laser confocal microscopy to examine and fluorescence cell image analysis to quantify the binding of fluorescently labeled CRP to cells expressing LOX-1. We then examined the binding of unlabeled CRP to recombinant human LOX-1 in a cell-free system. Small interfering RNAs (siRNAs) against LOX-1 were applied to cultured bovine endothelial cells to analyze the role of LOX-1 in native cells. To observe its in vivo effects, we injected CRP intradermally in stroke-prone spontaneously hypertensive (SHR-SP) rats and analyzed vascular permeability. RESULTS CRP bound to LOX-1-expressing cells in parallel with the induction of LOX-1 expression. CRP dose-dependently bound to the cell line and recombinant LOX-1, with significant binding detected at 0.3 mg/L CRP concentration. The K(d) value of the binding was calculated to be 1.6 x 10(-7) mol/L. siRNA against LOX-1 significantly inhibited the binding of fluorescently labeled CRP to the endothelial cells, whereas control RNA did not. In vivo, intradermal injection of CRP-induced vascular exudation of Evans blue dye in SHR-SP rats, in which expression of LOX-1 is greatly enhanced. Anti-LOX-1 antibody significantly suppressed vascular permeability. CONCLUSIONS CRP and oxidized LDL-receptor LOX-1 directly interact with each other. Two risk factors for ischemic heart diseases, CRP and oxidized LDL, share a common molecule, LOX-1, as their receptor.


Atherosclerosis | 2008

Determination of LOX-1-ligand activity in mouse plasma with a chicken monoclonal antibody for ApoB

Yuko Sato; Norihisa Nishimichi; Atsushi Nakano; Kenji Takikawa; Nobutaka Inoue; Haruo Matsuda; Tatsuya Sawamura

Oxidized LDL (OxLDL) is implicated in endothelial dysfunction as well as the formation and progression of atherosclerosis. It has become evident that the atherogenic properties induced by OxLDL are mainly mediated via lectin-like OxLDL receptor-1 (LOX-1). Over the past decade, much research has been performed to investigate lipid metabolism and atherogenesis using genetically engineered mice. To understand the significance of OxLDL, methods to measure the levels of OxLDL in these experimental animals should be established. Utilizing a chicken monoclonal antibody technique, here, we generated anti-human ApoB antibodies that are able to recognize mouse VLDL/LDL. These antibodies were selected from single chain fragment of variable region (scFv) phage library constructed from chickens immunized with human LDL. One of these antibodies, HUC20, was reconstructed into IgY form. Immunohistochemical analysis revealed that this novel antibody specifically stains atherosclerotic lesions of ApoE-deficient mice, associated with Oil red O positive and macrophage-antigen-positive regions. Furthermore, in combination with recombinant LOX-1, a sandwich enzyme immunoassay was developed to measure the levels of LOX-1 ligands in mouse plasma. The sandwich enzyme immunoassay revealed a dramatic increase in the level of LOX-1 ligands in the plasma of ApoE-deficient mice fed high-fat diet, suggesting a link between the level of LOX-1-ligands and the progression of atherosclerosis in mice. Hence, the chicken anti-ApoB monoclonal antibody HUC20 developed here, could be a useful tool to analyze the role of ApoB-containing lipoprotein in atherogenesis in mice.


Journal of Biological Chemistry | 2009

Polymeric Osteopontin Employs Integrin α9β1 as a Receptor and Attracts Neutrophils by Presenting a de Novo Binding Site

Norihisa Nishimichi; Fumiko Higashikawa; Hiromi H. Kinoh; Yoshiko Tateishi; Haruo Matsuda; Yasuyuki Yokosaki

Osteopontin (OPN) is a cytokine and ligand for multiple members of the integrin family. OPN undergoes the in vivo polymerization catalyzed by cross-linking enzyme transglutaminase 2, which consequently increases the bioactivity through enhanced interaction with integrins. The integrin α9β1, highly expressed on neutrophils, binds to the sequence SVVYGLR only after intact OPN is cleaved by thrombin. The SVVYGLR sequence appears to be cryptic in intact OPN because α9β1 does not recognize intact OPN. Because transglutaminase 2-catalyzed polymers change their physical and chemical properties, we hypothesized that the SVVYGLR site might also be exposed on polymeric OPN. As expected, α9β1 turned into a receptor for polymeric OPN, a result obtained by cell adhesion and migration assays with α9-transfected cells and by detection of direct binding of recombinant soluble α9β1 with colorimetry and surface plasmon resonance analysis. Because the N-terminal fragment of thrombin-cleaved OPN, a ligand for α9β1, has been reported to attract neutrophils, we next examined migration of neutrophils to polymeric OPN using time-lapse microscopy. Polymeric OPN showed potent neutrophil chemotactic activity, which was clearly inhibited by anti-α9β1 antibody. Unexpectedly, mutagenesis studies showed that α9β1 bound to polymeric OPN independently of the SVVYGLR sequence, and further, SVVYGLR sequence of polymeric OPN was cryptic because SVVYGLR-specific antibody did not recognize polymeric OPN. These results demonstrate that polymerization of OPN generates a novel α9β1-binding site and that the interaction of this site with the α9β1 integrin is critical to the neutrophil chemotaxis induced by polymeric OPN.


Journal of Biological Chemistry | 2011

Osteopontin Undergoes Polymerization in Vivo and Gains Chemotactic Activity for Neutrophils Mediated by Integrin α9β1

Norihisa Nishimichi; Hiromi Hayashita-Kinoh; Chun Chen; Haruo Matsuda; Dean Sheppard; Yasuyuki Yokosaki

Osteopontin (OPN) is an integrin-binding inflammatory cytokine that undergoes polymerization catalyzed by transglutaminase 2. We have previously reported that polymeric OPN (polyOPN), but not unpolymerized OPN (OPN*), attracts neutrophils in vitro by presenting an acquired binding site for integrin α9β1. Among many in vitro substrates for transglutaminase 2, only a few have evidence for in vivo polymerization and concomitant function. Although polyOPN has been identified in bone and aorta, the in vivo functional significance of polyOPN is unknown. To determine whether OPN polymerization contributes to neutrophil recruitment in vivo, we injected OPN* into the peritoneal space of mice. Polymeric OPN was detected by immunoblotting in the peritoneal wash of mice injected with OPN*, and both intraperitoneal and plasma OPN* levels were higher in mice injected with a polymerization-incompetent mutant, confirming that OPN* polymerizes in vivo. OPN* injection induced neutrophil accumulation, which was significantly less following injection of a mutant OPN that was incapable of polymerization. The importance of in vivo polymerization was further confirmed with cystamine, a transglutaminase inhibitor, which blocked the polymerization and attenuated OPN*-mediated neutrophil recruitment. The thrombin-cleaved N-terminal fragment of OPN, another ligand for α9β1, was not responsible for neutrophil accumulation because a thrombin cleavage-incompetent mutant recruited similar numbers of neutrophils as wild type OPN*. Neutrophil accumulation in response to both wild type and thrombin cleavage-incompetent OPN* was reduced in mice lacking the integrin α9 subunit in leukocytes, indicating that α9β1 is required for polymerization-induced recruitment. We have illustrated a physiological role of molecular polymerization by demonstrating acquired chemotactic properties for OPN.


Journal of Hypertension | 2010

LOX-1 mediates vascular lipid retention under hypertensive state.

Atushi Nakano; Nobutaka Inoue; Yuko Sato; Norihisa Nishimichi; Kenji Takikawa; Yoshiko Fujita; Akemi Kakino; Kazunori Otsui; Saburo Yamaguchi; Haruo Matsuda; Tatsuya Sawamura

Objectives Hypertension is a powerful independent risk factor for atherosclerotic cardiovascular diseases; however, the precise molecular mechanisms whereby hypertension promotes atherosclerotic formation remain to be determined. The interaction between oxidized low-density lipoprotein (oxLDL) and its receptor lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) plays a critical role in atherogenesis. To clarify how hypertension promotes atherosclerosis, we investigated specific roles of LOX-1 in acceleration of lipid deposition under a hypertensive state. Methods We employed a model of stroke-prone spontaneously hypertensive rats (SHR-SP) that exhibits acute lipid deposition in mesenteric artery induced by high fat and salt loading. These vascular lipid deposition lesions share similar characteristics with the initial lesions of human atherosclerosis. Results The enhanced LOX-1 expression in SHR-SP was associated with oxidized LDL deposited in vascular wall. Anti-LOX-1 neutralizing antibody dramatically suppressed the lipid deposition in vivo in SHR-SP. Vitamin E decreased serum oxLDL-like LOX-1 ligands, and suppressed the vascular lipid deposition. The vascular permeability, evaluated by the leakage of Evans blue, was markedly enhanced by pretreatment of oxLDL. The enhancement of vascular permeability induced by oxLDL was suppressed by anti-LOX-1 antibody. Conclusion The enhanced expression and activation of LOX-1 mediated the enhancement of vascular permeability, which contributed to the vascular lipid accumulation under hypertensive states.


mAbs | 2009

Generation and characterization of chicken monoclonal antibodies against human LOX-1

Shin Iwamoto; Norihisa Nishimichi; Yoshiko Tateishi; Yuko Sato; Hiroyuki Horiuchi; Shuichi Furusawa; Tatsuya Sawamura; Haruo Matsuda

Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is the major receptor for oxidized LDL (oxLDL), and plays a key role in the pathogenesis of atherosclerosis and cardiovascular diseases. Monoclonal antibodies (mAbs) specific for human LOX-1 (hLOX-1) were generated by a phage display technique using chickens immunized with recombinant hLOX-1 (rhLOX-1). A total of 53 independent scFv clones reactive for rhLOX-1 were obtained. Of the 53 clones, 49 recognized the C-type lectin-like domain (CTL domain), which contributes to the binding of oxLDL. Of these, 45 clones inhibited oxLDL-binding with LOX-1. Furthermore, some of these clones cross-reacted with rabbit, pig and/or mouse LOX-1. For possible application as therapeutic agents in the future, two cross-reactive mAbs were re-constructed as chicken-human chimeric antibodies. The chimeric antibodies showed similar characteristics compared to the original antibodies, and inhibited oxLDL binding to LOX-1 expressed on CHO cells. The results obtained in this study indicate that anti-LOX-1 mAbs might be useful tools for functional analyses and development of therapeutic agents for cardiovascular indications such as atherosclerosis.


Biology Open | 2016

Ultra-superovulation for the CRISPR-Cas9-mediated production of gene-knockout, single-amino-acid-substituted, and floxed mice

Yoshiko Nakagawa; Tetsushi Sakuma; Norihisa Nishimichi; Yasuyuki Yokosaki; Noriyuki Yanaka; Toru Takeo; Naomi Nakagata; Takashi Yamamoto

ABSTRACT Current advances in producing genetically modified mice using genome-editing technologies have indicated the need for improvement of limiting factors including zygote collection for microinjection and their cryopreservation. Recently, we developed a novel superovulation technique using inhibin antiserum and equine chorionic gonadotropin to promote follicle growth. This method enabled the increased production of fertilized oocytes via in vitro fertilization compared with the conventional superovulation method. Here, we verify that the ultra-superovulation technique can be used for the efficient generation of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated knockout mice by microinjection of plasmid vector or ribonucleoprotein into zygotes. We also investigated whether single-amino-acid-substituted mice and conditional knockout mice could be generated. Founder mice bearing base substitutions were generated more efficiently by co-microinjection of Cas9 protein, a guide RNA and single-stranded oligodeoxynucleotide (ssODN) than by plasmid microinjection with ssODN. The conditional allele was successfully introduced by the one-step insertion of an ssODN designed to carry an exon flanked by two loxP sequences and homology arms using a double-cut CRISPR-Cas9 strategy. Our study presents a useful method for the CRISPR-Cas9-based generation of genetically modified mice from the viewpoints of animal welfare and work efficiency. Summary: We demonstrate the production of CRISPR-Cas9-mediated knockout and knock-in mice using a recently developed ultra-superovulation technique to obtain greater numbers of oocytes compared with conventional methods.


Scientific Reports | 2015

Epitopes in α8β1 and other RGD-binding integrins delineate classes of integrin-blocking antibodies and major binding loops in α subunits.

Norihisa Nishimichi; Nagako Kawashima; Yasuyuki Yokosaki

Identification of epitopes for integrin-blocking monoclonal antibodies (mAbs) has aided our understanding of structure-function relationship of integrins. We mapped epitopes of chicken anti-integrin-α8-subunit-blocking mAbs by mutational analyses, examining regions that harboured all mapped epitopes recognized by mAbs against other α-subunits in the RGD-binding-integrin subfamily. Six mAbs exhibited blocking function, and these mAbs recognized residues on the same W2:41-loop on the top-face of the β-propeller. Loop-tips sufficiently close to W2:41 (<25 Å) contained within a footprint of the mAbs were mutated, and the loop W3:34 on the bottom face was identified as an additional component of the epitope of one antibody, clone YZ5. Binding sequences on the two loops were conserved in virtually all mammals, and that on W3:34 was also conserved in chickens. These indicate 1) YZ5 binds both top and bottom loops, and the binding to W3:34 is by interactions to conserved residues between immunogen and host species, 2) five other blocking mAbs solely bind to W2:41 and 3) the α8 mAbs would cross-react with most mammals. Comparing with the mAbs against the other α-subunits of RGD-integrins, two classes were delineated; those binding to “W3:34 and an top-loop”, and “solely W2:41”, accounting for 82% of published RGD-integrin-mAbs.


Biochemical and Biophysical Research Communications | 2012

Generation of intracellular single-chain antibodies directed against polypeptide GalNAc-transferase using a yeast two-hybrid system

Li Ma; Souichi Koyota; Yu Myoen; Tetsuro Yamashita; Naoki Yatabe; Yukio Koizumi; Masayoshi Aosasa; Norihisa Nishimichi; Haruo Matsuda; Toshihiro Sugiyama

Mucin-type O-glycosylation is initiated by a large number of UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferases (GalNAc-T). Although extensive in vitro studies using synthetic peptides as substrates suggest that most GalNAc-Ts exhibit overlapping substrate specificities, many studies have shown that individual GalNAc-Ts play an important role in both animals and humans. Further investigations of the functions of individual GalNAc-Ts including in vivo substrate proteins and O-glycosylation sites are necessary. In this study, we attempted to generate single-chain variable fragment (scFv) antibodies to bind to GalNAc-T1, T2, T3, and T4 using a yeast two-hybrid system for screening a naive chicken scFv library. Several different scFvs were isolated against a single target GalNAc-T isoform specifically under expressed in yeast and were confirmed to be expressed in mammalian cells and to retain binding activity inside the cells. Generation of these specific antibodies provides an opportunity to modify and exploit antibodies for specific applications in investigations of GalNAc-T functions.

Collaboration


Dive into the Norihisa Nishimichi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge