Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noriko Amiya is active.

Publication


Featured researches published by Noriko Amiya.


Nature Communications | 2013

The saccus vasculosus of fish is a sensor of seasonal changes in day length

Yusuke Nakane; Keisuke Ikegami; Masayuki Iigo; Hiroko Ono; Korenori Takeda; Daisuke Takahashi; Maiko Uesaka; Meita Kimijima; Ramu Hashimoto; Natsumi Arai; Takuya Suga; Katsuya Kosuge; Tomotaka Abe; Ryosuke Maeda; Takumi Senga; Noriko Amiya; Teruo Azuma; Masafumi Amano; Hideki Abe; Naoyuki Yamamoto; Takashi Yoshimura

The pars tuberalis of the pituitary gland is the regulatory hub for seasonal reproduction in birds and mammals. Although fish also exhibit robust seasonal responses, they do not possess an anatomically distinct pars tuberalis. Here we report that the saccus vasculosus of fish is a seasonal sensor. We observe expression of key genes regulating seasonal reproduction and rhodopsin family genes in the saccus vasculosus of masu salmon. Immunohistochemical studies demonstrate that all of these genes are expressed in the coronet cells of the saccus vasculosus, suggesting the existence of a photoperiodic signalling pathway from light input to neuroendocrine output. In addition, isolated saccus vasculosus has the capacity to respond to photoperiodic signals, and its removal abolishes photoperiodic response of the gonad. Although the physiological role of the saccus vasculosus has been a mystery for several centuries, our findings indicate that the saccus vasculosus acts as a sensor of seasonal changes in day length in fish.


Neuroscience Letters | 2007

Immunohistochemical localization of orexin/hypocretin-like immunoreactive peptides and melanin-concentrating hormone in the brain and pituitary of medaka

Noriko Amiya; Masafumi Amano; Yoshitaka Oka; Masayuki Iigo; Akiyoshi Takahashi

Orexin/hypocretin is a neuropeptide that is involved in the regulation of feeding behavior and the sleep-wakefulness cycle in mammals. Melanin-concentrating hormone (MCH) is believed to be another candidate involved in food intake in teleost fish as well. Thus, it is interesting to examine whether neural connections exist between the neurons producing these two hormones. We first examined the localization of orexin-like immunoreactivity (orexin-LI) in the brain of the medaka Oryzias latipes by using immunohistochemistry. We further examined the interaction between the orexin and MCH neurons in the medaka brain by performing double-staining immunohistochemistry. Orexin-LI cell bodies were located in the nucleus posterioris periventricularis (NPPv) of the hypothalamus, and orexin-LI fibers were detected not only in the hypothalamus but also extensively throughout the brain. Some orexin-LI fibers were in close contact with the MCH-immunoreactive (ir) cell bodies in the hypothalamus, as revealed by double-staining immunohistochemistry. Moreover, a few MCH-ir fibers were in close contact with the orexin-LI cell bodies. These results suggest that in the medaka brain, orexin performs various functions, including neuromodulation, and that neural connections exist between the orexin and MCH neurons.


General and Comparative Endocrinology | 2008

Immunohistochemical localization of a GnRH-like peptide in the brain of the cephalopod spear-squid, Loligo bleekeri

Masafumi Amano; Yoshitaka Oka; Yoshinori Nagai; Noriko Amiya

We examined whether a gonadotropin-releasing hormone (GnRH)-like peptide exists in the brain of the cephalopod spear-squid, Loligo bleekeri, by performing a time-resolved fluoroimmunoassay and immunohistochemistry. The displacement curve obtained for serially diluted extracts of the spear-squid brain paralleled the chicken GnRH-II (cGnRH-II) standard curve, indicating the existence of a cGnRH-II-like peptide in the brain. For immunohistochemistry, a mouse monoclonal antibody raised against the common amino acid sequence of GnRH (LRH13) and a rabbit polyclonal antibody raised against cGnRH-II were used. GnRH-like-immunoreactive (ir) cell bodies (that reacted with LRH13) were mainly detected in the central part of the ventral magnocellular lobe (vmL), and a few cell bodies were also detected in the olfactory lobe and palliovisceral lobe (pvL). Bundles of GnRH-like-ir axons were observed running from the vmL to the internal brain regions. GnRH-like-ir fibers were widely distributed in almost all the brain regions. cGnRH-II-ir cell bodies were localized in the optic gland, outer region of the vmL, and pvL. Further, cGnRH-II-ir fibers were distributed in the wide areas of the brain. These results suggest that at least two forms of GnRH-like peptidergic neuronal systems exist in the spear-squid brain.


Zoological Science | 2012

Food Deprivation Increases the Expression of the Prepro-Orexin Gene in the Hypothalamus of the Barfin Flounder, Verasper moseri

Noriko Amiya; Kanta Mizusawa; Yuki Kobayashi; Takeshi Yamanome; Masafumi Amano; Akiyoshi Takahashi

Orexins (orexin-A and -B) are involved in the regulation of food intake in mammals. In the barfin flounder, Verasper moseri, we previously reported that orexin-A-like-immunoreactive (ir) cell bodies are localized in the hypothalamus, which is a possible orexigenic center in fish. However, the physiological roles of orexin in the barfin flounder remain unclear. Here, we cloned prepro-orexin cDNA and examined the effects of feeding status on orexin gene expression in the barfin flounder to obtain a better insight into the roles of orexins in feeding regulation. A molecular cloning study showed that barfin flounder prepro-orexin cDNA encodes a 145 amino acid (aa) polypeptide containing orexin-A (43 aa) and orexin-B (28 aa). Prepro-orexin gene transcripts were detected in the hypothalamus, pituitary, and several peripheral organs such as the eyeball, gills, head kidney, body kidney, spleen, testis, and the skin on the eye-side of the flounders body. Furthermore, the mean prepro-orexin mRNA expression level in the hypothalamus was significantly higher in fasted than in fed fish. These results show that fasting regulates orexin mRNA in the hypothalamus and suggest that orexin is involved in feeding regulation in barfin flounder.


Zoological Science | 2008

Gene Structure and Functional Characterization of Growth Hormone in Dogfish, Squalus acanthias

Shunsuke Moriyama; Mayumi Oda; Tomohide Yamazaki; Kiyoko Yamaguchi; Noriko Amiya; Akiyoshi Takahashi; Masafumi Amano; Tomoaki Goto; Masumi Nozaki; Hiroshi Meguro; Hiroshi Kawauchi

Abstract Dogfish (Squalus acanthias) growth hormone (GH) was identified by cDNA cloning and protein purification from the pituitary gland. Dogfish GH cDNA encoded a prehormone of 210 amino acids (aa). Sequence analysis of purified GH revealed that the prehormone is composed of a signal peptide of 27 aa and a mature protein of 183 aa. Dogfish GH showed 94% sequence identity with blue shark GH, and also showed 37–66%, 26%, and 48–67% sequence identity with GH from osteichtyes, an agnathan, and tetrapods. The site of production was identified through immunocytochemistry to be cells of the proximal pars distalis of the pituitary gland. Dogfish GH stimulates both insulin-like growth factor-I and II mRNA levels in dogfish liver in vitro. The dogfish GH gene consisted of five exons and four introns, the same as in lamprey, teleosts such as cypriniforms and siluriforms, and tetrapods. The 5’-flanking region within 1082 bp of the transcription start site contained consensus sequences for the TATA box, Pit-1/GHF-1, CRE, TRE, and ERE. These results show that the endocrine mechanism for growth stimulation by the GH-IGF axis was established at an early stage of vertebrate evolution, and that the 5-exon-type gene organization might reflect the structure of the ancestral gene for the GH gene family.


Fisheries Science | 2007

Immunohistochemical localization of three GnRH systems in brain and pituitary of Japanese flounder

Ky Xuan Pham; Masafumi Amano; Noriko Amiya; Yutaka Kurita; Akio Shimizu

To clarify the possible roles of gonadotropin-releasing hormone (GnRH) in the reproduction of Japanese flounder Paralichthys olivaceus, localization of salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II), and sea bream GnRH (sbGnRH) immunoreactive (ir) cell bodies and fibers in the brain and pituitary were examined together with follicle stimulating hormone (FSH) and luteinizing hormone (LH)-ir cells in the pituitary by immunohistochemistry. sGnRH-ir cell bodies were localized in the ventromedial part of the rostral olfactory bulb and cGnRH-II-ir cell bodies were restricted to the midbrain tegmentum, while sbGnRH-ir cell bodies were evident in the preoptic area. sGnRH-ir fibers were distributed throughout the brain, especially abundant in the forebrain. cGnRH-II-ir fibers were also scattered in many areas of the brain with abundance in the midbrain, but sbGnRH-ir fibers were observed in the preoptic-hypothalamic area and innervated the pituitary. In the pituitary, neither sGnRH-ir fibers nor cGnRH-II-ir fibers were found, but sbGnRH-ir fibers were profuse in the neurohypophysis and invaded the proximal pars distalis, targeting FSH and LH cells. These results suggest that three GnRH systems can play different physiological roles in the brain of Japanese flounder. Among them, sbGnRH is considered to be involved in reproduction by stimulating gonadotropin secretion, while sGnRH and cGnRH-II can function as a neurotransmitter and/or neuromodulator within the brain in this species.


Zoological Science | 2010

Biochemical and Immunohistochemical Analyses of a GnRH-like Peptide in the Neural Ganglia of the Pacific Abalone Haliotis Discus Hannai (Gastropoda)

Masafumi Amano; Shunsuke Moriyama; Kataaki Okubo; Noriko Amiya; Akiyoshi Takahashi; Yoshitaka Oka

We examined whether gonadotropin-releasing hormone (GnRH)-like peptides are present in the neural ganglia of the gastropod Pacific abalone (Haliotis discus hannai) by reverse-phase high performance liquid chromatography (rpHPLC) combined with time-resolved fluoroimmunoassay (TR-FIA) analysis and by immunohistochemistry. Cerebral ganglion extracts showed a similar retention time to lamprey GnRH-II (lGnRH-II) in rpHPLC combined with TR-FIA analysis. GnRH-like-immunoreactive (ir) cell bodies (which reacted with a mouse monoclonal antibody raised against the common amino acid sequence of vertebrate GnRH) were detected in the peripheral region of the cerebral ganglion, and they were observed to send fibers into the neuropil. GnRH-like-ir fibers were also detected in the neuropil of the pedal ganglion, the visceral nerve, and the nerve originating from the pedal ganglion. Chicken GnRH-II (cGnRH-II)-like-ir fibers (which reacted with a rabbit polyclonal antibody raised against cGnRH-II) were also observed in the neuropil of the cerebral ganglion. GnRH-like-ir fibers and cGnRH-II-like-ir fibers were distinguishable in the neuropil of the cerebral ganglion by double-staining immunohistochemistry. These results suggest that multiple GnRH-like peptides exist in the neural ganglia of the Pacific abalone.


Fisheries Science | 2006

Distribution of three GnRHs in the brain and pituitary of the wild Japanese flounder Paralichthys olivaceus

Ky Xuan Pham; Masafumi Amano; Noriko Amiya; Yutaka Kurita

Wild a dult maturing and immature female Japanese flounder Paralichthys olivaceus were collected in June 2004 and January 2005, respectively, to clarify a possible role of gonadotropin-releasing hormones (GnRHs) in reproduction. Levels of salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II) and sea bream GnRH (sbGnRH) in the brain and pituitary were examined by time-resolved fluoroimmunoassay. Three forms of GnRHs were detected in the discrete brain at various levels. In the pituitary of both maturing and immature fish, sbGnRH was abundant together with a pronounced amount of sGnRH, whereas cGnRH-II was almost below the detectable limit. In maturing fish, levels of sbGnRH were high in the telencephalon, hypothalamus and pituitary, while levels of sbGnRH of immature fish were very low in these regions. These results indicate that sbGnRH is mainly responsible for gonadotropin secretion, and that sb GnRH in the anterior part of the brain is associated with gonadal maturation in the Japanese flounder.


Zoological Science | 2009

Biochemical analysis and lmmunohistochemical examination of a GnRH-like immunoreactive peptide in the central nervous system of a decapod Crustacean, the kuruma prawn (Marsupenaeus japonicus).

Masafumi Amano; Takuji Okumura; Kataaki Okubo; Noriko Amiya; Akiyoshi Takahashi; Yoshitaka Oka

We examined whether a gonadotropin-releasing hormone (GnRH)-like peptide exists in the central nervous system (CNS) of the kuruma prawn, Marsupenaeus japonicus, by reverse-phase high performance liquid chromatography (rpHPLC) combined with time-resolved fluoroimmunoassay (TR-FIA) analysis and by immunohistochemistry. The displacement curve obtained for serially diluted extracts of the kuruma prawn brain paralleled the chicken GnRH-II (cGnRH-II) standard curve obtained by cGnRH-II TR-FIA using the anti-cGnRH-II antibody, which cross-reacts not only with cGnRH-II but also with lamprey GnRH-II (lGnRH-II) and octopus GnRH (octGnRH). Extracts of kuruma prawn brains and eyestalks showed a similar retention time to synthetic lGnRH-II and octGnRH in rpHPLC combined with TR-FIA analysis. Using this antibody, we detected GnRH-like-immunoreactive (ir) cell bodies in the anterior-most part of the supraesophageal ganglion (brain), the protocerebrum. Furthermore, GnRH-like-ir fibers were observed in the protocerebrum and deutocerebrum. In the eyestalk, GnRH-like-ir cell bodies were detected in the medulla interna, and GnRH-like-ir fibers were distributed in the medulla interna, medulla externa, and lamina ganglionalis. In the thoracic ganglion, GnRH-like-ir fibers, but not GnRH-like-ir cell bodies, were detected. No GnRH-like-ir cell bodies or fibers were detected in the abdominal ganglion or ovary. Thus, we have shown the existence and distribution of a GnRH-like peptide in the CNS of the kuruma prawn.


Neuroscience Letters | 2007

Immunohistochemical localization and ontogenic development of prolactin-releasing peptide in the brain of the ovoviviparous fish species Poecilia reticulata (guppy).

Masafumi Amano; Yoshitaka Oka; Noriko Amiya

Immunohistochemical localization and ontogenic development of prolactin-releasing peptide (PrRP) in the brain of the ovoviviparous fish species Poecilia reticulata (guppy) were examined to gain a better understanding of this hormone in teleost fish. In adult guppies, PrRP-immunoreactive (ir) cell bodies were detected in the posterior part of the hypothalamus. In the pituitary, a small number of PrRP-ir fibers were observed adjacent to the prolactin cells, whereas numerous PrRP-ir fibers were detected not only in the hypothalamus but also widely throughout the brain. PrRP-ir cell bodies and prolactin cells were already detected on the birth day in the hypothalamus and pituitary, respectively. The number of PrRP-ir fibers in the brain increased as the fish developed. These results suggest that PrRP is involved in neuromodulation in the brain and that PrRP plays some physiological roles in the early development of the guppy.

Collaboration


Dive into the Noriko Amiya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge