Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noriko Nakagawa is active.

Publication


Featured researches published by Noriko Nakagawa.


Bioinformatics | 2005

Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm

Shuhei Kimura; Kaori Ide; Aiko Kashihara; Makoto Kano; Mariko Hatakeyama; Ryoji Masui; Noriko Nakagawa; Shigeyuki Yokoyama; Seiki Kuramitsu; Akihiko Konagaya

MOTIVATION To resolve the high-dimensionality of the genetic network inference problem in the S-system model, a problem decomposition strategy has been proposed. While this strategy certainly shows promise, it cannot provide a model readily applicable to the computational simulation of the genetic network when the given time-series data contain measurement noise. This is a significant limitation of the problem decomposition, given that our analysis and understanding of the genetic network depend on the computational simulation. RESULTS We propose a new method for inferring S-system models of large-scale genetic networks. The proposed method is based on the problem decomposition strategy and a cooperative coevolutionary algorithm. As the subproblems divided by the problem decomposition strategy are solved simultaneously using the cooperative coevolutionary algorithm, the proposed method can be used to infer any S-system model ready for computational simulation. To verify the effectiveness of the proposed method, we apply it to two artificial genetic network inference problems. Finally, the proposed method is used to analyze the actual DNA microarray data.


Journal of Nucleic Acids | 2010

Molecular mechanisms of the whole DNA repair system: a comparison of bacterial and eukaryotic systems.

Rihito Morita; Shuhei Nakane; Atsuhiro Shimada; Masao Inoue; Hitoshi Iino; Taisuke Wakamatsu; Kenji Fukui; Noriko Nakagawa; Ryoji Masui; Seiki Kuramitsu

DNA is subjected to many endogenous and exogenous damages. All organisms have developed a complex network of DNA repair mechanisms. A variety of different DNA repair pathways have been reported: direct reversal, base excision repair, nucleotide excision repair, mismatch repair, and recombination repair pathways. Recent studies of the fundamental mechanisms for DNA repair processes have revealed a complexity beyond that initially expected, with inter- and intrapathway complementation as well as functional interactions between proteins involved in repair pathways. In this paper we give a broad overview of the whole DNA repair system and focus on the molecular basis of the repair machineries, particularly in Thermus thermophilus HB8.


Journal of Biological Chemistry | 2008

Bound nucleotide controls the endonuclease activity of mismatch repair enzyme MutL.

Kenji Fukui; Masami Nishida; Noriko Nakagawa; Ryoji Masui; Seiki Kuramitsu

DNA mismatch repair corrects mismatched base pairs mainly caused by replication error. Recent studies revealed that human MutL endonuclease, hPMS2, plays an essential role in the repair. However, there has been little biochemical analysis of the MutL endonuclease. In particular, it is unknown for what the MutL utilizes ATP binding and hydrolyzing activity. Here we report the detailed functional analysis of Thermus thermophilus MutL (ttMutL). ttMutL exhibited an endonuclease activity that decreased on alteration of Asp-364 in ttMutL to Asn. The biochemical characteristics of ttMutL were significantly affected on ATP binding, which suppressed nonspecific DNA digestion and promoted the mismatch- and MutS-dependent DNA binding. The inactivation of the cysteinyl residues in the C-terminal domain resulted in the perturbation in ATP-dependent regulation of the endonuclease activity, although the ATP-binding motif is located in the N-terminal domain. Complementation experiments revealed that the endonuclease activity of ttMutL and its regulation by ATP binding are necessary for DNA repair in vivo.


Journal of Biological Chemistry | 2010

Structure of RecJ exonuclease defines its specificity for single-stranded DNA

Taisuke Wakamatsu; Yoshiaki Kitamura; Yutaro Kotera; Noriko Nakagawa; Seiki Kuramitsu; Ryoji Masui

RecJ is a single-stranded DNA (ssDNA)-specific 5′-3′ exonuclease that plays an important role in DNA repair and recombination. To elucidate how RecJ achieves its high specificity for ssDNA, we determined the entire structures of RecJ both in a ligand-free form and in a complex with Mn2+ or Mg2+ by x-ray crystallography. The entire RecJ consists of four domains that form a molecule with an O-like structure. One of two newly identified domains had structural similarities to an oligonucleotide/oligosaccharide-binding (OB) fold. The OB fold domain alone could bind to DNA, indicating that this domain is a novel member of the OB fold superfamily. The truncated RecJ containing only the core domain exhibited much lower affinity for the ssDNA substrate compared with intact RecJ. These results support the hypothesis that these structural features allow specific binding of RecJ to ssDNA. In addition, the structure of the RecJ-Mn2+ complex suggests that the hydrolysis reaction catalyzed by RecJ proceeds through a two-metal ion mechanism.


Journal of Biochemistry | 2008

An O6-methylguanine-DNA Methyltransferase-like Protein from Thermus thermophilus Interacts with a Nucleotide Excision Repair Protein

Rihito Morita; Noriko Nakagawa; Seiki Kuramitsu; Ryoji Masui

The major damage to DNA caused by alkylating agents involves the formation of O6-methylguanine (O6-meG). Almost all species possess O6-methylguanine-DNA-methyltransferase (Ogt) to repair such damage. Ogt repairs O6-meG lesions in DNA by stoichiometric transfer of the methyl group to a cysteine residue in its active site (PCHR). Thermus thermophilus HB8 has an Ogt homologue, TTHA1564, but in this case an alanine residue replaces cysteine in the putative active site. To reveal the possible function of TTHA1564 in processing O6-meG-containing DNA, we characterized the biochemical properties of TTHA1564. No methyltransferase activity for synthetic O6-meG-containing DNA could be detected, indicating TTHA1564 is an alkyltransferase-like protein. Nevertheless, gel shift assays showed that TTHA1564 can bind to DNA containing O6-meG with higher affinity (9-fold) than normal (unmethylated) DNA. Experiments using a fluorescent oligonucleotide suggested that TTHA1564 recognizes O6-meG in DNA using the same mechanism as other Ogts. We then investigated whether TTHA1564 functions as a damage sensor. Pull-down assays identified 20 proteins, including a nucleotide excision repair protein UvrA, which interacts with TTHA1564. Interaction of TTHA1564 with UvrA was confirmed using a surface plasmon resonance assay. These results suggest the possible involvement of TTHA1564 in DNA repair pathways.


Journal of Biological Chemistry | 2008

Crystal Structure of MutS2 Endonuclease Domain and the Mechanism of Homologous Recombination Suppression

Kenji Fukui; Noriko Nakagawa; Yoshiaki Kitamura; Yuya Nishida; Ryoji Masui; Seiki Kuramitsu

DNA recombination events need to be strictly regulated, because an increase in the recombinational frequency causes unfavorable alteration of genetic information. Recent studies revealed the existence of a novel anti-recombination enzyme, MutS2. However, the mechanism by which MutS2 inhibits homologous recombination has been unknown. Previously, we found that Thermus thermophilus MutS2 (ttMutS2) harbors an endonuclease activity and that this activity is confined to the C-terminal domain, whose amino acid sequence is widely conserved in a variety of proteins with unknown function from almost all organisms ranging from bacteria to man. In this study, we determined the crystal structure of the ttMutS2 endonuclease domain at 1.7-Å resolution, which resembles the structure of the DNase I-like catalytic domain of Escherichia coli RNase E, a sequence-nonspecific endonuclease. The N-terminal domain of ttMutS2, however, recognized branched DNA structures, including the Holliday junction and D-loop structure, a primary intermediate in homologous recombination. The full-length of ttMutS2 digested the branched DNA structures at the junction. These results indicate that ttMutS2 suppresses homologous recombination through a novel mechanism involving resolution of early intermediates.


Nucleic Acids Research | 2009

Characterization of DNA polymerase X from Thermus thermophilus HB8 reveals the POLXc and PHP domains are both required for 3′–5′ exonuclease activity

Shuhei Nakane; Noriko Nakagawa; Seiki Kuramitsu; Ryoji Masui

The X-family DNA polymerases (PolXs) comprise a highly conserved DNA polymerase family found in all kingdoms. Mammalian PolXs are known to be involved in several DNA-processing pathways including repair, but the cellular functions of bacterial PolXs are less known. Many bacterial PolXs have a polymerase and histidinol phosphatase (PHP) domain at their C-termini in addition to a PolX core (POLXc) domain, and possess 3′–5′ exonuclease activity. Although both domains are highly conserved in bacteria, their molecular functions, especially for a PHP domain, are unknown. We found Thermus thermophilus HB8 PolX (ttPolX) has Mg2+/Mn2+-dependent DNA/RNA polymerase, Mn2+-dependent 3′–5′ exonuclease and DNA-binding activities. We identified the domains of ttPolX by limited proteolysis and characterized their biochemical activities. The POLXc domain was responsible for the polymerase and DNA-binding activities but exonuclease activity was not detected for either domain. However, the POLXc and PHP domains interacted with each other and a mixture of the two domains had Mn2+-dependent 3′–5′ exonuclease activity. Moreover, site-directed mutagenesis revealed catalytically important residues in the PHP domain for the 3′–5′ exonuclease activity. Our findings provide a molecular insight into the functional domain organization of bacterial PolXs, especially the requirement of the PHP domain for 3′–5′ exonuclease activity.


Journal of Biological Chemistry | 2011

Role of RecJ-like Protein with 5′-3′ Exonuclease Activity in Oligo(deoxy)nucleotide Degradation

Taisuke Wakamatsu; Kwang Kim; Yuri Uemura; Noriko Nakagawa; Seiki Kuramitsu; Ryoji Masui

RecJ-like proteins belonging to the DHH family have been proposed to function as oligoribonucleases and 3′-phosphoadenosine 5′-phosphate (pAp) phosphatases in bacteria and archaea, which do not have Orn (oligoribonuclease) and CysQ (pAp phosphatase) homologs. In this study, we analyzed the biochemical and physiological characterization of the RecJ-like protein TTHA0118 from Thermus thermophilus HB8. TTHA0118 had high enzymatic activity as an oligodeoxyribonucleotide- and oligoribonucleotide-specific exonuclease and as pAp phosphatase. The polarity of degradation was 5′ to 3′, in contrast to previous reports about Bacillus subtilis NrnA, a RecJ-like protein. TTHA0118 preferentially hydrolyzed short oligodeoxyribonucleotides and oligoribonucleotides, whereas the RecJ exonuclease from T. thermophilus HB8 showed no such length dependence on oligodeoxyribonucleotide substrates. An insertion mutation of the ttha0118 gene led to growth reduction in minimum essential medium. Added 5′-mononucleotides, nucleosides, and cysteine increased growth of the ttha0118 mutant in minimum essential medium. The RecJ-like protein Mpn140 from Mycoplasma pneumoniae M129, which cannot synthesize nucleic acid precursors de novo, showed similar biochemical features to TTHA0118. Furthermore, B. subtilis NrnA also hydrolyzed oligo(deoxy)ribonucleotides in a 5′-3′ direction. These results suggested that these RecJ-like proteins act in recycling short oligonucleotides to mononucleotides and in controlling pAp concentrations in vivo.


Acta Crystallographica Section D-biological Crystallography | 2007

Structure of dNTP-inducible dNTP triphosphohydrolase: insight into broad specificity for dNTPs and triphosphohydrolase-type hydrolysis.

Naoyuki Kondo; Noriko Nakagawa; Akio Ebihara; Lirong Chen; Zhi-Jie Liu; Bi-Cheng Wang; Shigeyuki Yokoyama; Seiki Kuramitsu; Ryoji Masui

Deoxyribonucleoside triphosphate triphosphohydrolase from Thermus thermophilus (Tt-dNTPase) has a unique regulatory mechanism for the degradation of deoxyribonucleoside triphosphates (dNTPs). Whereas the Escherichia coli homologue specifically hydrolyzes dGTP alone, dNTPs act as both substrate and activator for Tt-dNTPase. Here, the crystal structure of Tt-dNTPase has been determined at 2.2 A resolution, representing the first report of the tertiary structure of a dNTPase homologue belonging to the HD superfamily, a diverse group of metal-dependent phosphohydrolases that includes a variety of uncharacterized proteins. This enzyme forms a homohexamer as a double ring of trimers. The subunit is composed of 19 alpha-helices; the inner six helices include the region annotated as the catalytic domain of the HD superfamily. Structural comparison with other HD-superfamily proteins indicates that a pocket at the centre of the inner six helices, formed from highly conserved charged residues clustered around a bound magnesium ion, constitutes the catalytic site. Tt-dNTPase also hydrolyzed noncanonical dNTPs, but hardly hydrolyzed dNDP and dNMP. The broad substrate specificity for different dNTPs might be rationalized by the involvement of a flexible loop during molecular recognition of the base moiety. Recognition of the triphosphate moiety crucial for the activity might be attained by highly conserved positively charged residues. The possible mode of dNTP binding is discussed in light of the structure.


Journal of Biological Chemistry | 1997

Domain Structure of Thermus thermophilus UvrB Protein SIMILARITY IN DOMAIN STRUCTURE TO A HELICASE

Noriko Nakagawa; Ryoji Masui; Ryuichi Kato; Seiki Kuramitsu

UvrB protein plays an essential role in the prokaryotic excision repair system. UvrB protein shows cryptic ATPase activity, DNA binding, helicase-like activity, and incision activity by interacting with UvrA or UvrC proteins. To reveal the structure-function relationship of this multifunctional protein, the domain structure of Thermus thermophilus UvrB protein (ttUvrB) was studied by limited proteolysis and denaturation experiments. Proteolytic profiles indicated that ttUvrB consists of four domains: the N domain (residues 2–105), M domain (106–455), C1 domain (456–590), and C2 domain (591–665). The properties of the proteolytic fragments indicated the involvement of the respective domains in the functions of the protein as follows: the N and C1 domains are necessary for ATPase activity, the C1 domain is indispensable for DNA binding, and the N and/or M domains are involved in UvrA binding. The structural stability of the C1 and C2 domains was higher than that of the N and M domains, which supports the proposed domain nature of ttUvrB. Based on these results and the crystal structure of PcrA helicase (Subramanya, H. S., Bird, L. E., Brannigan, J. A., and Wigley, D. B. (1996) Nature384, 379–383), the domain organization of ttUvrB was proposed.

Collaboration


Dive into the Noriko Nakagawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akeo Shinkai

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Seiki Baba

Chiba Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge