Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noriko Takashima is active.

Publication


Featured researches published by Noriko Takashima.


Cell | 2009

Adult Neurogenesis Modulates the Hippocampus-Dependent Period of Associative Fear Memory

Takashi Kitamura; Yoshito Saitoh; Noriko Takashima; Akiko Murayama; Yosuke Niibori; Hiroshi Ageta; Mariko Sekiguchi; Hiroyuki Sugiyama; Kaoru Inokuchi

Acquired memory initially depends on the hippocampus (HPC) for the process of cortical permanent memory formation. The mechanisms through which memory becomes progressively independent from the HPC remain unknown. In the HPC, adult neurogenesis has been described in many mammalian species, even at old ages. Using two mouse models in which hippocampal neurogenesis is physically or genetically suppressed, we show that decreased neurogenesis is accompanied by a prolonged HPC-dependent period of associative fear memory. Inversely, enhanced neurogenesis by voluntary exercise sped up the decay rate of HPC dependency of memory, without loss of memory. Consistently, decreased neurogenesis facilitated the long-lasting maintenance of rat hippocampal long-term potentiation in vivo. These independent lines of evidence strongly suggest that the level of hippocampal neurogenesis play a role in determination of the HPC-dependent period of memory in adult rodents. These observations provide a framework for understanding the mechanisms of the hippocampal-cortical complementary learning systems.


Genes to Cells | 2005

Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neurogenesis

Motoko Maekawa; Noriko Takashima; Yoko Arai; Tadashi Nomura; Kaoru Inokuchi; Shigeki Yuasa; Noriko Osumi

Neurogenesis is crucial for brain formation and continues to take place in certain regions of the postnatal brain including the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). Pax6 transcription factor is a key player for patterning the brain and promoting embryonic neurogenesis, and is also expressed in the SGZ. In the DG of wild‐type rats, more than 90% of total BrdU‐incorporated cells expressed Pax6 at 30 min time point after BrdU injection. Moreover, approximately 60% of Pax6+ cells in the SGZ exhibited as GFAP+ cells with a radial glial phenotype and about 30% of Pax6+ cells exhibited as PSA‐NCAM+ cells in clusters. From BrdU labeling for 3 days, we found that cell proliferation was 30% decreased at postnatal stages in Pax6‐deficient rSey2/+ rat. BrdU pulse/chase experiments combined with marker staining revealed that PSA‐NCAM+ late progenitor cells increased at the expense of GFAP+ early progenitors in rSey2/+ rat. Furthermore, expression of Wnt ligands in the SGZ was markedly reduced in rSey2/+ rat. Taken all together, an appropriate dosage of Pax6 is essential for production and maintenance of the GFAP+ early progenitor cells in the postnatal hippocampal neurogenesis.


PLOS ONE | 2009

Arachidonic acid drives postnatal neurogenesis and elicits a beneficial effect on prepulse inhibition, a biological trait of psychiatric illnesses.

Motoko Maekawa; Noriko Takashima; Miho Matsumata; Shiro Ikegami; Masanori Kontani; Yoshinobu Hara; Hiroshi Kawashima; Yuji Owada; Yoshinobu Kiso; Takeo Yoshikawa; Kaoru Inokuchi; Noriko Osumi

Prepulse inhibition (PPI) is a compelling endophenotype (biological markers) for mental disorders including schizophrenia. In a previous study, we identified Fabp7, a fatty acid binding protein 7 as one of the genes controlling PPI in mice and showed that this gene was associated with schizophrenia. We also demonstrated that disrupting Fabp7 dampened hippocampal neurogenesis. In this study, we examined a link between neurogenesis and PPI using different animal models and exploring the possibility of postnatal manipulation of neurogenesis affecting PPI, since gene-deficient mice show biological disturbances from prenatal stages. In parallel, we tested the potential for dietary polyunsaturated fatty acids (PUFAs), arachidonic acid (ARA) and/or docosahexaenoic acid (DHA), to promote neurogenesis and improve PPI. PUFAs are ligands for Fabp members and are abundantly expressed in neural stem/progenitor cells in the hippocampus. Our results are: (1) an independent model animal, Pax6 (+/−) rats, exhibited PPI deficits along with impaired postnatal neurogenesis; (2) methylazoxymethanol acetate (an anti-proliferative drug) elicited decreased neurogenesis even in postnatal period, and PPI defects in young adult rats (10 weeks) when the drug was given at the juvenile stage (4–5 weeks); (3) administering ARA for 4 weeks after birth promoted neurogenesis in wild type rats; (4) raising Pax6 (+/−) pups on an ARA-containing diet enhanced neurogenesis and partially improved PPI in adult animals. These results suggest the potential benefit of ARA in ameliorating PPI deficits relevant to psychiatric disorders and suggest that the effect may be correlated with augmented postnatal neurogenesis.


PLOS ONE | 2010

Evaluation of Pax6 Mutant Rat as a Model for Autism

Toshiko Umeda; Noriko Takashima; Ryoko Nakagawa; Motoko Maekawa; Shiro Ikegami; Takeo Yoshikawa; Kazuto Kobayashi; Kazuo Okanoya; Kaoru Inokuchi; Noriko Osumi

Autism is a highly variable brain developmental disorder and has a strong genetic basis. Pax6 is a pivotal player in brain development and maintenance. It is expressed in embryonic and adult neural stem cells, in astrocytes in the entire central nervous system, and in neurons in the olfactory bulb, amygdala, thalamus, and cerebellum, functioning in highly context-dependent manners. We have recently reported that Pax6 heterozygous mutant (rSey2/+) rats with a spontaneous mutation in the Pax6 gene, show impaired prepulse inhibition (PPI). In the present study, we further examined behaviors of rSey2/+ rats and revealed that they exhibited abnormality in social interaction (more aggression and withdrawal) in addition to impairment in rearing activity and in fear-conditioned memory. Ultrasonic vocalization (USV) in rSey2+ rat pups was normal in male but abnormal in female. Moreover, treatment with clozapine successfully recovered the defects in sensorimotor gating function, but not in fear-conditioned memory. Taken together with our prior human genetic data and results in other literatures, rSey2/+ rats likely have some phenotypic components of autism.


Learning & Memory | 2010

Activin plays a key role in the maintenance of long-term memory and late-LTP

Hiroshi Ageta; Shiro Ikegami; Masami Miura; Masao Masuda; Rika Migishima; Toshiaki Hino; Noriko Takashima; Akiko Murayama; Hiromu Sugino; Mitsutoshi Setou; Satoshi Kida; Minesuke Yokoyama; Yoshihisa Hasegawa; Kunihiro Tsuchida; Toshihiko Aosaki; Kaoru Inokuchi

A recent study has revealed that fear memory may be vulnerable following retrieval, and is then reconsolidated in a protein synthesis-dependent manner. However, little is known about the molecular mechanisms of these processes. Activin betaA, a member of the TGF-beta superfamily, is increased in activated neuronal circuits and regulates dendritic spine morphology. To clarify the role of activin in the synaptic plasticity of the adult brain, we examined the effect of inhibiting or enhancing activin function on hippocampal long-term potentiation (LTP). We found that follistatin, a specific inhibitor of activin, blocked the maintenance of late LTP (L-LTP) in the hippocampus. In contrast, administration of activin facilitated the maintenance of early LTP (E-LTP). We generated forebrain-specific activin- or follistatin-transgenic mice in which transgene expression is under the control of the Tet-OFF system. Maintenance of hippocampal L-LTP was blocked in the follistatin-transgenic mice. In the contextual fear-conditioning test, we found that follistatin blocked the formation of long-term memory (LTM) without affecting short-term memory (STM). Furthermore, consolidated memory was selectively weakened by the expression of follistatin during retrieval, but not during the maintenance phase. On the other hand, the maintenance of memory was also influenced by activin overexpression during the retrieval phase. Thus, the level of activin in the brain during the retrieval phase plays a key role in the maintenance of long-term memory.


PLOS ONE | 2011

Impaired cognitive function and altered hippocampal synapse morphology in mice lacking Lrrtm1, a gene associated with schizophrenia.

Noriko Takashima; Yuri S. Odaka; Kazuto Sakoori; Takumi Akagi; Tsutomu Hashikawa; Naoko Morimura; Kazuyuki Yamada; Jun Aruga

Recent genetic linkage analysis has shown that LRRTM1 (Leucine rich repeat transmembrane neuronal 1) is associated with schizophrenia. Here, we characterized Lrrtm1 knockout mice behaviorally and morphologically. Systematic behavioral analysis revealed reduced locomotor activity in the early dark phase, altered behavioral responses to novel environments (open-field box, light-dark box, elevated plus maze, and hole board), avoidance of approach to large inanimate objects, social discrimination deficit, and spatial memory deficit. Upon administration of the NMDA receptor antagonist MK-801, Lrrtm1 knockout mice showed both locomotive activities in the open-field box and responses to the inanimate object that were distinct from those of wild-type mice, suggesting that altered glutamatergic transmission underlay the behavioral abnormalities. Furthermore, administration of a selective serotonin reuptake inhibitor (fluoxetine) rescued the abnormality in the elevated plus maze. Morphologically, the brains of Lrrtm1 knockout mice showed reduction in total hippocampus size and reduced synaptic density. The hippocampal synapses were characterized by elongated spines and diffusely distributed synaptic vesicles, indicating the role of Lrrtm1 in maintaining synaptic integrity. Although the pharmacobehavioral phenotype was not entirely characteristic of those of schizophrenia model animals, the impaired cognitive function may warrant the further study of LRRTM1 in relevance to schizophrenia.


Molecular Brain | 2008

Decreased postnatal neurogenesis in the hippocampus combined with stress experience during adolescence is accompanied by an enhanced incidence of behavioral pathologies in adult mice

Fumihiko Hayashi; Noriko Takashima; Akiko Murayama; Kaoru Inokuchi

BackgroundAdolescence is a vulnerable period in that stress experienced during this time can affect the incidence of psychiatric disorders later, during adulthood. Neurogenesis is known to be involved in the postnatal development of the brain, but its role in determining an individuals biological vulnerability to the onset of psychiatric disorders has not been addressed.ResultsWe examined the role of postnatal neurogenesis during adolescence, a period between 3 to 8 weeks of age in rodents. Mice were X-irradiated at 4 weeks of age, to inhibit postnatal neurogenesis in the sub-granule cell layer of the hippocampus. Electrical footshock stress (FSS) was administered at 8 weeks old, the time at which neurons being recruited to granule cell layer were those that had begun their differentiation at 4 weeks of age, during X-irradiation. X-irradiated mice subjected to FSS during adolescence exhibited decreased locomotor activity in the novel open field, and showed prepulse inhibition deficits in adulthood. X-irradiation or FSS alone exerted no effects on these behaviors.ConclusionThese results suggest that mice with decreased postnatal neurogenesis during adolescence exhibit vulnerability to stress, and that persistence of this condition may result in decreased activity, and cognitive deficits in adulthood.


Molecular Brain | 2012

Hippocampal function is not required for the precision of remote place memory.

Takashi Kitamura; Reiko Okubo-Suzuki; Noriko Takashima; Akiko Murayama; Toshiaki Hino; Hirofumi Nishizono; Satoshi Kida; Kaoru Inokuchi

BackgroundDuring permanent memory formation, recall of acquired place memories initially depends on the hippocampus and eventually become hippocampus-independent with time. It has been suggested that the quality of original place memories also transforms from a precise form to a less precise form with similar time course. The question arises of whether the quality of original place memories is determined by brain regions on which the memory depends.ResultsTo directly test this idea, we introduced a new procedure: a non-associative place recognition memory test in mice. Combined with genetic and pharmacological approaches, our analyses revealed that place memory is precisely maintained for 28 days, although the recall of place memory shifts from hippocampus-dependent to hippocampus-independent with time. Moreover, the inactivation of the hippocampal function does not inhibit the precision of remote place memory.ConclusionThese results indicate that the quality of place memories is not determined by brain regions on which the memory depends.


PLOS ONE | 2011

Impaired Auditory-Vestibular Functions and Behavioral Abnormalities of Slitrk6-Deficient Mice

Yoshifumi Matsumoto; Kei-ichi Katayama; Takehito Okamoto; Kazuyuki Yamada; Noriko Takashima; Soichi Nagao; Jun Aruga

A recent study revealed that Slitrk6, a transmembrane protein containing a leucine-rich repeat domain, has a critical role in the development of the inner ear neural circuit. However, it is still unknown how the absence of Slitrk6 affects auditory and vestibular functions. In addition, the role of Slitrk6 in regions of the central nervous system, including the dorsal thalamus, has not been addressed. To understand the physiological role of Slitrk6, Slitrk6-knockout (KO) mice were subjected to systematic behavioral analyses including auditory and vestibular function tests. Compared to wild-type mice, the auditory brainstem response (ABR) of Slitrk6-KO mice indicated a mid-frequency range (8–16 kHz) hearing loss and reduction of the first ABR wave. The auditory startle response was also reduced. A vestibulo-ocular reflex (VOR) test showed decreased vertical (head movement–induced) VOR gains and normal horizontal VOR. In an open field test, locomotor activity was reduced; the tendency to be in the center region was increased, but only in the first 5 min of the test, indicating altered adaptive responses to a novel environment. Altered adaptive responses were also found in a hole-board test in which head-dip behavior was increased and advanced. Aside from these abnormalities, no clear abnormalities were noted in the mood, anxiety, learning, spatial memory, or fear memory–related behavioral tests. These results indicate that the Slitrk6-KO mouse can serve as a model of hereditary sensorineural deafness. Furthermore, the altered responses of Slitrk6-KO mice to the novel environment suggest a role of Slitrk6 in some cognitive functions.


Journal of Clinical Investigation | 2017

Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington’s disease

Motomasa Tanaka; Koko Ishizuka; Yoko Nekooki-Machida; Ryo Endo; Noriko Takashima; Hideyuki Sasaki; Yusuke Komi; Amy Gathercole; Elaine Huston; Kazuhiro Ishii; Kelvin Hui; Masaru Kurosawa; Sun Hong Kim; Nobuyuki Nukina; Eiki Takimoto; Miles D. Houslay; Akira Sawa

Huntington’s disease (HD) is a polyglutamine (polyQ) disease caused by aberrant expansion of the polyQ tract in Huntingtin (HTT). While motor impairment mediated by polyQ-expanded HTT has been intensively studied, molecular mechanisms for nonmotor symptoms in HD, such as psychiatric manifestations, remain elusive. Here we have demonstrated that HTT forms a ternary protein complex with the scaffolding protein DISC1 and cAMP-degrading phosphodiesterase 4 (PDE4) to regulate PDE4 activity. We observed pathological cross-seeding between DISC1 and mutant HTT aggregates in the brains of HD patients as well as in a murine model that recapitulates the polyQ pathology of HD (R6/2 mice). In R6/2 mice, consequent reductions in soluble DISC1 led to dysregulation of DISC1-PDE4 complexes, aberrantly increasing the activity of PDE4. Importantly, exogenous expression of a modified DISC1, which binds to PDE4 but not mutant HTT, normalized PDE4 activity and ameliorated anhedonia in the R6/2 mice. We propose that cross-seeding of mutant HTT and DISC1 and the resultant changes in PDE4 activity may underlie the pathology of a specific subset of mental manifestations of HD, which may provide an insight into molecular signaling in mental illness in general.

Collaboration


Dive into the Noriko Takashima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Aruga

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuyuki Yamada

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Kelvin Hui

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Motoko Maekawa

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Motomasa Tanaka

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryo Endo

RIKEN Brain Science Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge