Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noriko Yamagishi is active.

Publication


Featured researches published by Noriko Yamagishi.


NeuroImage | 2003

Attentional modulation of oscillatory activity in human visual cortex

Noriko Yamagishi; Naokazu Goda; Stephen J. Anderson; Yoshikazu Yoshida; Mitsuo Kawato

The effects of attentional modulation on activity within the human visual cortex were investigated using magnetoencephalography. Chromatic sinusoidal stimuli were used to evoke activity from the occipital cortex, with attention directed either toward or away from the stimulus using a bar-orientation judgment task. For five observers, global magnetic field power was plotted as a function of time from stimulus onset. The major peak of each function occurred at about 120 ms latency and was well modeled by a current dipole near the calcarine sulcus. Independent component analysis (ICA) on the non-averaged data for each observer also revealed one component of calcarine origin, the location of which matched that of the dipolar source determined from the averaged data. For two observers, ICA revealed a second component near the parieto-occipital sulcus. Although no effects of attention were evident using standard averaging procedures, time-varying spectral analyses of single trials revealed that the main effect of attention was to alter the level of oscillatory activity. Most notably, a sustained increase in alpha-band (7-12 Hz) activity of both calcarine and parieto-occipital origin was evident. In addition, calcarine activity in the range of 13-21 Hz was enhanced, while calcarine activity in the range of 5-6 Hz was reduced. Our results are consistent with the hypothesis that attentional modulation affects neural processing within the calcarine and parieto-occipital cortex by altering the amplitude of alpha-band activity and other natural brain rhythms.


Proceedings of the Royal Society of London B: Biological Sciences | 2002

Attentional processes link perception and action

Stephen J. Anderson; Noriko Yamagishi; Vivian Karavia

Behavioural studies on normal and brain–damaged individuals provide convincing evidence that the perception of objects results in the generation of both visual and motor signals in the brain, irrespective of whether or not there is an intention to act upon the object. In this paper we sought to determine the basis of the motor signals generated by visual objects. By examining how the properties of an object affect an observers reaction time for judging its orientation, we provide evidence to indicate that directed visual attention is responsible for the automatic generation of motor signals associated with the spatial characteristics of perceived objects.


Brain Research | 2008

Attentional changes in pre-stimulus oscillatory activity within early visual cortex are predictive of human visual performance

Noriko Yamagishi; Stephen J. Anderson; Mitsuo Kawato

Physiological and neuroimaging studies provide evidence to suggest that attentional mechanisms operating within the fronto-parietal network may exert top-down control on early visual areas, priming them for forthcoming sensory events. The believed consequence of such priming is enhanced task performance. Using the technique of magnetoencephalography (MEG), we investigated this possibility by examining whether attention-driven changes in cortical activity are correlated with performance on a line-orientation judgment task. We observed that, approximately 200 ms after a covert attentional shift towards the impending visual stimulus, the level of phase-resetting (transient neural coherence) within the calcarine significantly increased for 2-10 Hz activity. This was followed by a suppression of alpha activity (near 10 Hz) which persisted until the onset of the stimulus. The levels of phase-resetting, alpha suppression and subsequent behavioral performance varied between subjects in a systematic fashion. The magnitudes of phase-resetting and alpha-band power were negatively correlated, with high levels of coherence associated with high levels of performance. We propose that top-down attentional control mechanisms exert their initial effects within the calcarine through a phase-resetting within the 2-10 Hz band, which in turn triggers a suppression of alpha activity, priming early visual areas for incoming information and enhancing behavioral performance.


NeuroImage | 2008

Evaluation of hierarchical Bayesian method through retinotopic brain activities reconstruction from fMRI and MEG signals

Taku Yoshioka; Keisuke Toyama; Mitsuo Kawato; Okito Yamashita; Shigeaki Nishina; Noriko Yamagishi; Masa-aki Sato

A hierarchical Bayesian method estimated current sources from MEG data, incorporating an fMRI constraint as a hierarchical prior whose strength is controlled by hyperparameters. A previous study [Sato, M., Yoshioka, T., Kajihara, S., Toyama, K., Goda, N., Doya, K., Kawato, M., 2004. Hierarchical Bayesian estimation for MEG inverse problem. Neuroimage 23, 806-826] demonstrated that fMRI information improves the localization accuracy for simulated data. The goal of the present study is to confirm the usefulness of the hierarchical Bayesian method by the real MEG and fMRI experiments using visual stimuli with a fan-shaped checkerboard pattern presented in four visual quadrants. The proper range of hyperparameters was systematically analyzed using goodness of estimate measures for the estimated currents. The robustness with respect to false-positive activities in the fMRI information was also evaluated by using noisy priors constructed by adding artificial noises to real fMRI signals. It was shown that with appropriate hyperparameter values, the retinotopic organization and temporal dynamics in the early visual area were reconstructed, which were in a close correspondence with the known brain imaging and electrophysiology of the humans and monkeys. The false-positive effects of the noisy priors were suppressed by using appropriate hyperparameter values. The hierarchical Bayesian method also was capable of reconstructing retinotopic sequential activation in V1 with fine spatiotemporal resolution, from MEG data elicited by sequential stimulation of the four visual quadrants with the fan-shaped checker board pattern at much shorter intervals (150 and 400 ms) than the temporal resolution of fMRI. These results indicate the potential capability for the hierarchical Bayesian method combining MEG with fMRI to improve the spatiotemporal resolution of noninvasive brain activity measurement.


Proceedings of the Royal Society of London B: Biological Sciences | 2001

Evidence for dissociation between the perceptual and visuomotor systems in humans

Noriko Yamagishi; Stephen J. Anderson; Hiroshi Ashida

When a visual stimulus is continuously moved behind a small stationary window, the window appears displaced in the direction of motion of the stimulus. In this study we showed that the magnitude of this illusion is dependent on (i) whether a perceptual or visuomotor task is used for judging the location of the window, (ii) the directional signature of the stimulus, and (iii) whether or not there is a significant delay between the end of the visual presentation and the initiation of the localization measure. Our stimulus was a drifting sinusoidal grating windowed in space by a stationary, two–dimensional, Gaussian envelope (s = 1 cycle of sinusoid). Localization measures were made following either a short (200 ms) long (4.2s) post–stimulus delay.The visuomotor localization error was up to three times greater than the perceptual error for a short delay. However, the visuomotor and perceptual localization measures were similar for a long delay. Our results provide evidence in support of the hypothesis that separate cortical pathways exist for visual perception and visually guided action and that delayed actions rely on stored perceptual information.


Vision Research | 2009

Boosting perceptual learning by fake feedback

Kazuhisa Shibata; Noriko Yamagishi; Shin Ishii; Mitsuo Kawato

How does the brain control its sensory plasticity using performance feedback? We examined this question using various types of fake feedback in perceptual learning paradigm. We demonstrated that fake feedback indicating a larger performance improvement facilitated learning compared with genuine feedback. Variance of the fake feedback modulated learning as well, suggesting that feedback uncertainty can be internally evaluated. These results were explained by a computational model which controlled the learning rate of the visual system based on Bayesian estimation of performance gradient incorporating an optimistic bias. Our findings suggest that sensory plasticity might be controlled by high-level cognitive processes.


Vision Research | 2000

Spatial localization of colour and luminance stimuli in human peripheral vision

Stephen J. Anderson; Noriko Yamagishi

A variety of studies suggest the localization of objects in three-dimensional space is predominantly the task of the magnocellular (M) system, and conversely that the parvocellular (P) system plays little or no role in localization. However, there are conflicting reports and the goal of this paper was to determine whether spatial localization is predominantly accomplished by one or the other visual system. Both manual pointing and three-target alignment protocols were used to measure localization accuracy for eccentrically presented patches of a sinewave grating. Two general approaches were adopted to activate preferentially one or the other pathway: (1) we varied the spatio-temporal frequency, contrast and chromatic properties of the stimulus to conform with the physiological response properties of either M or P cells; and (2) some measurements were made both with steady fixation and during large saccades, as the latter have been reported to cause selective suppression of the M system [Burr, Morrone & Ross (1994). Nature, 371, 511-513]. Each stimulus was presented at or near its detection contrast threshold, which was determined separately for each visual field location using forced-choice procedures. Using manual pointing, both M- and P-type stimuli were localized to within about 1.3 degrees at retinal eccentricities near 10 degrees. This accuracy was not affected by distractor targets in the peripheral field or temporal uncertainty in stimulus presentation, but was reduced by a similar amount for each stimulus type during saccadic eye movements. Using the alignment task, localization accuracy remained at about 1.3 degrees for P-type stimuli but improved to 0.5 degrees for M-type stimuli. We conclude that both M and P systems play an equally important role in localizing peripheral targets for the purpose of visuo-motor tasks such as pointing, but that the M system may offer an advantage over the P system for the perceptual task of localizing a stimulus relative to nearby targets.


PLOS ONE | 2013

The Relationship between Self-Awareness of Attentional Status, Behavioral Performance and Oscillatory Brain Rhythms

Noriko Yamagishi; Stephen J. Anderson

High-level cognitive factors, including self-awareness, are believed to play an important role in human visual perception. The principal aim of this study was to determine whether oscillatory brain rhythms play a role in the neural processes involved in self-monitoring attentional status. To do so we measured cortical activity using magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) while participants were asked to self-monitor their internal status, only initiating the presentation of a stimulus when they perceived their attentional focus to be maximal. We employed a hierarchical Bayesian method that uses fMRI results as soft-constrained spatial information to solve the MEG inverse problem, allowing us to estimate cortical currents in the order of millimeters and milliseconds. Our results show that, during self-monitoring of internal status, there was a sustained decrease in power within the 7-13 Hz (alpha) range in the rostral cingulate motor area (rCMA) on the human medial wall, beginning approximately 430 msec after the trial start (p < 0.05, FDR corrected). We also show that gamma-band power (41-47 Hz) within this area was positively correlated with task performance from 40–640 msec after the trial start (r = 0.71, p < 0.05). We conclude: (1) the rCMA is involved in processes governing self-monitoring of internal status; and (2) the qualitative differences between alpha and gamma activity are reflective of their different roles in self-monitoring internal states. We suggest that alpha suppression may reflect a strengthening of top-down interareal connections, while a positive correlation between gamma activity and task performance indicates that gamma may play an important role in guiding visuomotor behavior.


PLOS ONE | 2014

Revealing Time-Unlocked Brain Activity from MEG Measurements by Common Waveform Estimation

Yusuke Takeda; Kentaro Yamanaka; Noriko Yamagishi; Masa-aki Sato

Brain activities related to cognitive functions, such as attention, occur with unknown and variable delays after stimulus onsets. Recently, we proposed a method (Common Waveform Estimation, CWE) that could extract such brain activities from magnetoencephalography (MEG) or electroencephalography (EEG) measurements. CWE estimates spatiotemporal MEG/EEG patterns occurring with unknown and variable delays, referred to here as unlocked waveforms, without hypotheses about their shapes. The purpose of this study is to demonstrate the usefulness of CWE for cognitive neuroscience. For this purpose, we show procedures to estimate unlocked waveforms using CWE and to examine their role. We applied CWE to the MEG epochs during Go trials of a visual Go/NoGo task. This revealed unlocked waveforms with interesting properties, specifically large alpha oscillations around the temporal areas. To examine the role of the unlocked waveform, we attempted to estimate the strength of the brain activity of the unlocked waveform in various conditions. We made a spatial filter to extract the component reflecting the brain activity of the unlocked waveform, applied this spatial filter to MEG data under different conditions (a passive viewing, a simple reaction time, and Go/NoGo tasks), and calculated the powers of the extracted components. Comparing the powers across these conditions suggests that the unlocked waveforms may reflect the inhibition of the task-irrelevant activities in the temporal regions while the subject attends to the visual stimulus. Our results demonstrate that CWE is a potential tool for revealing new findings of cognitive brain functions without any hypothesis in advance.


Proceedings of the Royal Society of London B: Biological Sciences | 2010

The observant mind: self-awareness of attentional status

Noriko Yamagishi; Stephen J. Anderson; Mitsuo Kawato

Visual perception is dependent not only on low-level sensory input but also on high-level cognitive factors such as attention. In this paper, we sought to determine whether attentional processes can be internally monitored for the purpose of enhancing behavioural performance. To do so, we developed a novel paradigm involving an orientation discrimination task in which observers had the freedom to delay target presentation—by any amount required—until they judged their attentional focus to be complete. Our results show that discrimination performance is significantly improved when individuals self-monitor their level of visual attention and respond only when they perceive it to be maximal. Although target delay times varied widely from trial-to-trial (range 860 ms–12.84 s), we show that their distribution is Gaussian when plotted on a reciprocal latency scale. We further show that the neural basis of the delay times for judging attentional status is well explained by a linear rise-to-threshold model. We conclude that attentional mechanisms can be self-monitored for the purpose of enhancing human decision-making processes, and that the neural basis of such processes can be understood in terms of a simple, yet broadly applicable, linear rise-to-threshold model.

Collaboration


Dive into the Noriko Yamagishi's collaboration.

Top Co-Authors

Avatar

Mitsuo Kawato

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naokazu Goda

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Masa-aki Sato

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron R. Seitz

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuhisa Shibata

Nara Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge