Norimitsu Ban
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Norimitsu Ban.
Cell Reports | 2016
Jonathan J. Miner; Abdoulaye Sene; Justin M. Richner; Amber M. Smith; Andrea Santeford; Norimitsu Ban; James Weger-Lucarelli; Francesca Manzella; Claudia Rückert; Jennifer Govero; Kevin K. Noguchi; Gregory D. Ebel; Michael S. Diamond; Rajendra S. Apte
Zika virus (ZIKV) is an emerging flavivirus that causes congenital abnormalities and Guillain-Barré syndrome. ZIKV infection also results in severe eye disease characterized by optic neuritis, chorioretinal atrophy, and blindness in newborns and conjunctivitis and uveitis in adults. We evaluated ZIKV infection of the eye by using recently developed mouse models of pathogenesis. ZIKV-inoculated mice developed conjunctivitis, panuveitis, and infection of the cornea, iris, optic nerve, and ganglion and bipolar cells in the retina. This phenotype was independent of the entry receptors Axl or Mertk, given that Axl(-/-), Mertk(-/-), and Axl(-/-)Mertk(-/-) double knockout mice sustained levels of infection similar to those of control animals. We also detected abundant viral RNA in tears, suggesting that virus might be secreted from lacrimal glands or shed from the cornea. This model provides a foundation for studying ZIKV-induced ocular disease, defining mechanisms of viral persistence, and developing therapeutic approaches for viral infections of the eye.
Experimental Diabetes Research | 2011
Yoko Ozawa; Toshihide Kurihara; Mariko Sasaki; Norimitsu Ban; Kenya Yuki; Shunsuke Kubota; Kazuo Tsubota
Diabetic retinopathy, a vision-threatening disease, has been regarded as a vascular disorder. However, impaired oscillatory potentials (OPs) in the electroretinogram (ERG) and visual dysfunction are recorded before severe vascular lesions appear. Here, we review the molecular mechanisms underlying the retinal neural degeneration observed in the streptozotocin-(STZ-) induced type 1 diabetes model. The renin-angiotensin system (RAS) and reactive oxygen species (ROS) both cause OP impairment and reduced levels of synaptophysin, a synaptic vesicle protein for neurotransmitter release, most likely through excessive protein degradation by the ubiquitin-proteasome system. ROS also decrease brain-derived neurotrophic factor (BDNF) and inner retinal neuronal cells. The influence of both RAS and ROS on synaptophysin suggests that RAS-ROS crosstalk occurs in the diabetic retina. Therefore, suppressors of RAS or ROS, such as angiotensin II type 1 receptor blockers or the antioxidant lutein, respectively, are potential candidates for neuroprotective and preventive therapies to improve the visual prognosis.
Cell Reports | 2016
Jonathan B. Lin; Shunsuke Kubota; Norimitsu Ban; Mitsukuni Yoshida; Andrea Santeford; Abdoulaye Sene; Rei Nakamura; Nicole Zapata; Miyuki Kubota; Kazuo Tsubota; Jun Yoshino; Shin-ichiro Imai; Rajendra S. Apte
Photoreceptor death is the endpoint of many blinding diseases. Identifying unifying pathogenic mechanisms in these diseases may offer global approaches for facilitating photoreceptor survival. We found thatxa0rod or cone photoreceptor-specific deletion ofxa0nicotinamide phosphoribosyltransferase (Nampt), the rate-limiting enzyme in the major NAD(+) biosynthetic pathway beginning with nicotinamide, caused retinal degeneration. In both cases, we could rescue vision with nicotinamide mononucleotide (NMN). Significantly, retinal NAD(+) deficiency was an early feature of multiple mouse models of retinal dysfunction, including light-induced degeneration, streptozotocin-induced diabetic retinopathy, and age-associated dysfunction. Mechanistically, NAD(+) deficiency caused metabolic dysfunction and consequent photoreceptor death. We further demonstrate that the NAD(+)-dependent mitochondrial deacylases SIRT3 and SIRT5 play important roles in retinal homeostasis and that NAD(+) deficiency causes SIRT3 dysfunction. These findings demonstrate that NAD(+) biosynthesis is essential for vision, provide a foundation for future work to further clarify the mechanisms involved, and identify a unifying therapeutic target forxa0diverse blinding diseases.
Experimental Gerontology | 2013
Norimitsu Ban; Yoko Ozawa; Takaaki Inaba; Seiji Miyake; Mitsuhiro Watanabe; Ken Shinmura; Kazuo Tsubota
Sirtuins (Sirt1-7) are nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylases/ADP-ribosyltransferases that modulate many metabolic responses affecting aging. Sirtuins expressed in tissues and organs involved in systemic metabolism have been extensively studied. However, the characteristics of sirtuins in the retina, where local energy expenditure changes dynamically in response to light stimuli, are largely unknown. Here we analyzed sirtuin mRNA levels by real-time PCR, and found that all seven sirtuins are highly expressed in the retina compared with other tissues, such as liver. We then analyzed the sirtuin mRNA profiles in the retina over time, under a 12-h light/12-h dark cycle (LD condition) and in constant darkness (DD condition). All seven sirtuins showed significant daily variation under the LD condition, with all except Sirt6 being increased in the dark phase. The expression patterns were different under the DD condition, suggesting that sirtuin mRNA levels except Sirt6 are affected by light-dark condition. These findings were not obtained in the brain and liver. In addition, the mRNA expression patterns of Nicotinamide phosphoribosyltransferase (Nampt), peroxisome proliferator-activated receptor gamma coactivator (PGC1α), and transcription factor A, mitochondrial (Tfam) in the retina, were similar to those of the sirtuins except Sirt6. Our observations provide new insights into the metabolic mechanisms of the retina and the sirtuins regulatory systems.
JCI insight | 2018
Jonathan B. Lin; Harsh V. Moolani; Abdoulaye Sene; Rohini Sidhu; Pamela Kell; Joseph B. Lin; Zhenyu Dong; Norimitsu Ban; Daniel S. Ory; Rajendra S. Apte
Macrophage aging is pathogenic in diseases of the elderly, including age-related macular degeneration (AMD), a leading cause of blindness in older adults. However, the role of microRNAs, which modulate immune processes, in regulating macrophage dysfunction and thereby promoting age-associated diseases is underexplored. Here, we report that microRNA-150 (miR-150) coordinates transcriptomic changes in aged murine macrophages, especially those associated with aberrant lipid trafficking and metabolism in AMD pathogenesis. Molecular profiling confirmed that aged murine macrophages exhibit dysregulated ceramide and phospholipid profiles compared with young macrophages. Of translational relevance, upregulation of miR-150 in human peripheral blood mononuclear cells was also significantly associated with increased odds of AMD, even after controlling for age. Mechanistically, miR-150 directly targets stearoyl-CoA desaturase-2, which coordinates macrophage-mediated inflammation and pathologic angiogenesis, as seen in AMD, in a VEGF-independent manner. Together, our results implicate miR-150 as pathogenic in AMD and provide potentially novel molecular insights into diseases of aging.
JCI insight | 2017
Norimitsu Ban; Carla J. Siegfried; Jonathan B. Lin; Ying-Bo Shui; Julia Sein; Wolfgang Pita-Thomas; Abdoulaye Sene; Andrea Santeford; Mae O. Gordon; Rachel Lamb; Zhenyu Dong; Shannon C. Kelly; Valeria Cavalli; Jun Yoshino; Rajendra S. Apte
Glaucoma is the second leading cause of blindness worldwide. Physicians often use surrogate endpoints to monitor the progression of glaucomatous neurodegeneration. These approaches are limited in their ability to quantify disease severity and progression due to inherent subjectivity, unreliability, and limitations of normative databases. Therefore, there is a critical need to identify specific molecular markers that predict or measure glaucomatous neurodegeneration. Here, we demonstrate that growth differentiation factor 15 (GDF15) is associated with retinal ganglion cell death. Gdf15 expression in the retina is specifically increased after acute injury to retinal ganglion cell axons and in a murine chronic glaucoma model. We also demonstrate that the ganglion cell layer may be one of the sources of secreted GDF15 and that GDF15 diffuses to and can be detected in aqueous humor (AH). In validating these findings in human patients with glaucoma, we find not only that GDF15 is increased in AH of patients with primary open angle glaucoma (POAG), but also that elevated GDF15 levels are significantly associated with worse functional outcomes in glaucoma patients, as measured by visual field testing. Thus, GDF15 maybe a reliable metric of glaucomatous neurodegeneration, although further prospective validation studies will be necessary to determine if GDF15 can be used in clinical practice.
Trends in Molecular Medicine | 2018
Norimitsu Ban; Carla J. Siegfried; Rajendra S. Apte
Glaucoma is one of the leading causes of blindness globally, and is characterized by loss of retinal ganglion cells (RGCs). Because vision loss in glaucoma is not reversible, therapeutic interventions early in disease are highly desirable. However, owing to the current limitations in evaluating glaucomatous neurodegeneration, it is challenging to monitor the disease severity and progression objectively, and to design rational therapeutic strategies accordingly. Therefore, there is a clear need to identify quantifiable molecular biomarkers of glaucomatous neurodegeneration. As such, in our opinion, molecular biomarker(s) that specifically reflect stress or death of RGCs, and which correlate with disease severity, progression, and response to therapy, are highly desirable.
Endocrinology and Metabolic Syndrome | 2012
Yoko Ozawa; Mamoru Kamoshita; Toshio Narimatsu; Norimitsu Ban; Eriko Toda; Tomohiro Okamoto; Kenya Yuki; Seiji Miyake; Kazuo Tsubota
The retina is composed of neural networks that are responsible for visual function, and vascular networks that support the tissue. Although vascular targeting therapies for retinal diseases have recently been developed, therapies directly targeting the neuronal component of these diseases have yet to be developed. Here, we review recent studies describing the pathological signaling that occurs within the neuronal cells of retinal disease models. The molecular changes caused by endogenous or exogenous factors in the retinal neural cells and the molecular events involved in neuroinflammation are illustrated. These underlying molecular mechanisms reveal promising targets for new therapeutic approaches for retinal neural disorders.
npj Aging and Mechanisms of Disease | 2017
Norimitsu Ban; Yoko Ozawa; Hideto Osada; Jonathan B. Lin; Eriko Toda; Mitsuhiro Watanabe; Kenya Yuki; Shunsuke Kubota; Rajendra S. Apte; Kazuo Tsubota
SIRT3 is a key regulator of mitochondrial reactive oxygen species as well as mitochondrial function. The retina is one of the highest energy-demanding tissues, in which the regulation of reactive oxygen species is critical to prevent retinal neurodegeneration. Although previous reports have demonstrated that SIRT3 is highly expressed in the retina and important in neuroprotection, function of SIRT3 in regulating reactive oxygen species in the retina is largely unknown. In this study, we investigated the role of retinal SIRT3 in a light-induced retinal degeneration model using SIRT3 knockout mice. We demonstrate that SIRT3 deficiency causes acute reactive oxygen species accumulation and endoplasmic reticulum stress in the retina after the light exposure, which leads to increased photoreceptor death, retinal thinning, and decreased retinal function. Using a photoreceptor-derived cell line, we revealed that reactive oxygen species were the upstream initiators of endoplasmic reticulum stress. Under SIRT3 knockdown condition, we demonstrated that decreased superoxide dismutase 2 activity led to elevated intracellular reactive oxygen species. These studies have helped to elucidate the critical role of SIRT3 in photoreceptor neuronal survival, and suggest that SIRT3 might be a therapeutic target for oxidative stress-induced retinal disorders.Author SummarySirtuins are nicotinamide adenine dinucleotide-dependent protein deacetylases. Among seven sirtuins, SIRT3 is a key regulator of mitochondrial function. However, functions of SIRT3 in the retina are largely unknown. In this study, we investigated the role of retinal SIRT3 in a mouse model of light-induced retinal degeneration, found that SIRT3 has neuroprotective role in the retina. We demonstrate that SIRT3 deficiency causes acute reactive oxygen species accumulation and endoplasmic reticulum stress in the retina after the light exposure, which leads to increased photoreceptor death, retinal thinning, and decreased retinal function. Using a photoreceptor-derived cell line, we revealed that reactive oxygen species were the upstream initiators of endoplasmic reticulum stress, and decreased superoxide dismutase 2 activity led to elevated intracellular reactive oxygen species. These results suggest that SIRT3 might be a therapeutic target for oxidative stress-induced retinal disorders.
Journal of Lipid Research | 2018
Norimitsu Ban; Tae Jun Lee; Abdoulaye Sene; Zhenyu Dong; Andrea Santeford; Jonathan B. Lin; Daniel S. Ory; Rajendra S. Apte
Photoreceptors have high intrinsic metabolic demand and are exquisitely sensitive to metabolic perturbation. In addition, they shed a large portion of their outer segment lipid membranes in a circadian manner, increasing the metabolic burden on the outer retina associated with the resynthesis of cell membranes and disposal of the cellular cargo. Here, we demonstrate that deletion of both ABCA1 and ABCG1 in rod photoreceptors leads to age-related accumulation of cholesterol metabolites in the outer retina, photoreceptor dysfunction, degeneration of rod outer segments, and ultimately blindness. A high-fat diet significantly accelerates rod neurodegeneration and vision loss, further highlighting the role of lipid homeostasis in regulating photoreceptor neurodegeneration and vision.