Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norio Ishigaki is active.

Publication


Featured researches published by Norio Ishigaki.


Small | 2008

Carbon Nanotubes with High Bone‐Tissue Compatibility and Bone‐Formation Acceleration Effects

Yuki Usui; Kaoru Aoki; Nobuyo Narita; Narumichi Murakami; Isao Nakamura; Koichi Nakamura; Norio Ishigaki; Hiroshi Yamazaki; Hiroshi Horiuchi; Hiroyuki Kato; Seiichi Taruta; Yoong Ahm Kim; Morinobu Endo; Naoto Saito

Carbon nanotubes (CNTs) have been used in various fields as composites with other substances or alone to develop highly functional materials. CNTs hold great interest with respect to biomaterials, particularly those to be positioned in contact with bone such as prostheses for arthroplasty, plates or screws for fracture fixation, drug delivery systems, and scaffolding for bone regeneration. Accordingly, bone-tissue compatibility of CNTs and CNT influence on bone formation are important issues, but the effects of CNTs on bone have not been delineated. Here, it is found that multi-walled CNTs adjoining bone induce little local inflammatory reaction, show high bone-tissue compatibility, permit bone repair, become integrated into new bone, and accelerate bone formation stimulated by recombinant human bone morphogenetic protein-2 (rhBMP-2). This study provides an initial investigational basis for CNTs in biomaterials that are used adjacent to bone, including uses to promote bone regeneration. These findings should encourage development of clinical treatment modalities involving CNTs.


Current Medicinal Chemistry | 2008

Carbon Nanotubes for Biomaterials in Contact with Bone

Naoto Saito; Yuki Usui; Kaoru Aoki; Nobuyo Narita; Masayuki Shimizu; Nobuhide Ogiwara; Koichi Nakamura; Norio Ishigaki; Hiroyuki Kato; Seiichi Taruta; Morinobu Endo

Carbon nanotubes (CNTs) possess exceptional mechanical, thermal, and electrical properties, facilitating their use as reinforcements or additives in various materials to improve the properties of the materials. Furthermore, chemically modified CNTs can introduce novel functionalities. In the medical field, biomaterials are expected to be developed using CNTs for clinical use. Biomaterials often are placed adjacent to bone. The use of CNTs is anticipated in these biomaterials applied to bone mainly to improve their overall mechanical properties, for applications such as high-strength arthroplasty prostheses or fixation plates and screws that will not fail. In addition, CNTs are expected to be used as local drug delivery systems (DDS) and/or scaffolds to promote and guide bone tissue regeneration. However, studies examining the use of CNTs as biomaterials still are in the preliminary stages. In particular, the influence of CNTs on osteoblastic cells or bone tissue is extremely important for the use of CNTs in biomaterials placed in contact with bone, and some studies have explored this. This review paper clarifies the current state of knowledge in the context of the relationship between CNTs and bone to determine whether CNTs might perform in biomaterials in contact with bone, or as a DDS and/or scaffolding for bone regeneration.


International Journal of Nanomedicine | 2011

Effect of dispersants of multi-walled carbon nanotubes on cellular uptake and biological responses

Hisao Haniu; Naoto Saito; Yoshikazu Matsuda; Yoong-Ahm Kim; Ki Chul Park; Tamotsu Tsukahara; Yuki Usui; Kaoru Aoki; Masayuki Shimizu; Nobuhide Ogihara; Kazuo Hara; Seiji Takanashi; Masanori Okamoto; Norio Ishigaki; Koichi Nakamura; Hiroyuki Kato

Although there have been many reports about the cytotoxicity of multi-walled carbon nanotubes (MWCNTs), the results are still controversial. To investigate one possible reason, the authors investigated the influence of MWCNT dispersants on cellular uptake and cytotoxicity. Cytotoxicity was examined (measured by alamarBlue® assay), as well as intracellular MWCNT concentration and cytokine secretion (measured by flow cytometry) in human bronchial epithelial cells (BEAS-2B) exposed to a type of highly purified MWCNT vapor grown carbon fiber (VGCF®, Shōwa Denkō Kabushiki-gaisha, Tokyo, Japan) in three different dispersants (gelatin, carboxylmethyl cellulose, and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine). The authors also researched the relationship between the intracellular concentration of MWCNTs and cytotoxicity by using two cell lines, BEAS-2B and MESO-1 human malignant pleural mesothelioma cells. The intracellular concentration of VGCF was different for each of the three dispersants, and the levels of cytotoxicity and inflammatory response were correlated with the intracellular concentration of VGCF. A relationship between the intracellular concentration of VGCF and cytotoxic effects was observed in both cell lines. The results indicate that dispersants affect VGCF uptake into cells and that cytotoxicity depends on the intracellular concentration of VGCF, not on the exposed dosage. Thus, toxicity appears to depend on exposure time, even at low VGCF concentrations, because VGCF is biopersistent.


Journal of Biomechanics | 2011

Analysis of pelvic movement in the elderly during walking using a posture monitoring system equipped with a triaxial accelerometer and a gyroscope

Norio Ishigaki; Teiji Kimura; Yuki Usui; Kaoru Aoki; Nobuyo Narita; Masayuki Shimizu; Kazuo Hara; Nobuhide Ogihara; Koichi Nakamura; Hiroyuki Kato; Masayoshi Ohira; Yoshiharu Yokokawa; Kei Miyoshi; Narumichi Murakami; Shinpei Okada; Tomokazu Nakamura; Naoto Saito

The incidence of falls in the elderly is increasing with the aging of society and is becoming a major public health issue. From the viewpoint of prevention of falls, it is important to evaluate the stability of the gait in the elderly people. The pelvic movement, which is a critical factor for walking stability, was analyzed using a posture monitoring system equipped with a triaxial accelerometer and a gyroscope. The subjects were 95 elderly people over 60 years of age. The criteria for instability were open-eye standing on one leg for 15s or less, and 11s or more on 3m timed up and go test. Forty subjects who did not meet both of these criteria comprised the stable group, and the remaining 55 subjects comprised the unstable group. Pelvic movement during walking was compared between the two groups. The angle, angular velocity, and acceleration were analyzed based on the wave shape derived from the device worn around the second sacral. The results indicated that pelvic movement was lower in all three directions in the unstable group compared to the stable group, and the changes in the pelvic movement during walking in unstable elderly people were also reduced. This report is the first to evaluate pelvic movement by both a triaxial accelerometer and a triaxial gyroscope simultaneously. The characteristics of pelvic movement during walking can be applied in screening to identify elderly people with instability, which is the main risk factor associated with falls.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

Biocompatibility and bone tissue compatibility of alumina ceramics reinforced with carbon nanotubes

Nobuhide Ogihara; Yuki Usui; Kaoru Aoki; Masayuki Shimizu; Nobuyo Narita; Kazuo Hara; Koichi Nakamura; Norio Ishigaki; Seiji Takanashi; Masanori Okamoto; Hiroyuki Kato; Hisao Haniu; Naoko Ogiwara; Noboru Nakayama; Seiichi Taruta; Naoto Saito

AIMS The addition of carbon nanotubes (CNTs) remarkably improves the mechanical characteristics of base materials. CNT/alumina ceramic composites are expected to be highly functional biomaterials useful in a variety of medical fields. Biocompatibility and bone tissue compatibility were studied for the application of CNT/alumina composites as biomaterials. METHODS & RESULTS Inflammation reactions in response to the composite were as mild as those of alumina ceramic alone in a subcutaneous implantation study. In bone implantation testing, the composite showed good bone tissue compatibility and connected directly to new bone. An in vitro cell attachment test was performed for osteoblasts, chondrocytes, fibroblasts and smooth muscle cells, and CNT/alumina composite showed cell attachment similar to that of alumina ceramic. DISCUSSION & CONCLUSION Owing to proven good biocompatibility and bone tissue compatibility, the application of CNT/alumina composites as biomaterials that contact bone, such as prostheses in arthroplasty and devices for bone repair, are expected.


Advanced Materials | 2012

Carbon Nanotubes Induce Bone Calcification by Bidirectional Interaction with Osteoblasts

Masayuki Shimizu; Yasuhiro Kobayashi; Toshihide Mizoguchi; Hiroaki Nakamura; Ichiro Kawahara; Nobuyo Narita; Yuki Usui; Kaoru Aoki; Kazuo Hara; Hisao Haniu; Nobuhide Ogihara; Norio Ishigaki; Koichi Nakamura; Hiroyuki Kato; Masatomo Kawakubo; Yoshiko Dohi; Seiichi Taruta; Yoong Ahm Kim; Morinobu Endo; Hidehiro Ozawa; Nobuyuki Udagawa; Naoyuki Takahashi; Naoto Saito

Multi-walled carbon nanotubes (MWCNTs) promote calcification during hydroxyapatite (HA) formation by osteoblasts. Primary cultured osteoblasts are incubated with MWCNTs or carbon black. After culture for 3 weeks, the degree of calcification is very high in the 50 μg mL(-1) MWCNT group. Transmission electron microscopy shows needle-like crystals around the MWCNTs, and diffraction patterns reveal that the peak of the crystals almost coincides with the known peak of HA.


Scientific Reports | 2012

Carcinogenicity evaluation for the application of carbon nanotubes as biomaterials in rasH2 mice

Seiji Takanashi; Kazuo Hara; Kaoru Aoki; Yuki Usui; Masayuki Shimizu; Hisao Haniu; Nobuhide Ogihara; Norio Ishigaki; Koichi Nakamura; Masanori Okamoto; Shinsuke Kobayashi; Hiroyuki Kato; Kenji Sano; Naoyuki Nishimura; Hideki Tsutsumi; Kazuhiko Machida; Naoto Saito

The application of carbon nanotubes (CNTs) as biomaterials is of wide interest, and studies examining their application in medicine have had considerable significance. Biological safety is the most important factor when considering the clinical application of CNTs as biomaterials, and various toxicity evaluations are required. Among these evaluations, carcinogenicity should be examined with the highest priority; however, no report using transgenic mice to evaluate the carcinogenicity of CNTs has been published to date. Here, we performed a carcinogenicity test by implanting multi-walled CNTs (MWCNTs) into the subcutaneous tissue of rasH2 mice, using the carbon black present in black tattoo ink as a reference material for safety. The rasH2 mice did not develop neoplasms after being injected with MWCNTs; instead, MWCNTs showed lower carcinogenicity than carbon black. Such evaluations should facilitate the clinical application and development of CNTs for use in important medical fields.


International Journal of Nanomedicine | 2011

Elucidation mechanism of different biological responses to multi-walled carbon nanotubes using four cell lines

Hisao Haniu; Naoto Saito; Yoshikazu Matsuda; Yoong-Ahm Kim; Ki Chul Park; Tamotsu Tsukahara; Yuki Usui; Kaoru Aoki; Masayuki Shimizu; Nobuhide Ogihara; Kazuo Hara; Seiji Takanashi; Masanori Okamoto; Norio Ishigaki; Koichi Nakamura; Hiroyuki Kato

We examined differences in cellular responses to multi-walled carbon nanotubes (MWCNTs) using malignant pleural mesothelioma cells (MESO-1), bronchial epithelial cells (BEAS-2B), neuroblastoma cells (IMR-32), and monoblastic cells (THP-1), before and after differentiation. MESO-1, BEAS-2B and differentiated THP-1 cells actively endocytosed MWCNTs, resulting in cytotoxicity with lysosomal injury. However, cytotoxicity did not occur in IMR-32 or undifferentiated THP-1 cells. Both differentiated and undifferentiated THP-1 cells exhibited an inflammatory response. Carbon blacks were endocytosed by the same cell types without lysosomal damage and caused cytokine secretion, but they did not cause cytotoxicity. These results indicate that the cytotoxicity of MWCNTs requires not only cellular uptake but also lysosomal injury. Furthermore, it seems that membrane permeability or cytokine secretion without cytotoxicity results from several active mechanisms. Clarification of the cellular recognition mechanism for MWCNTs is important for developing safer MWCNTs.


Journal of Nanomaterials | 2012

Basic potential of carbon nanotubes in tissue engineering applications

Hisao Haniu; Naoto Saito; Yoshikazu Matsuda; Tamotsu Tsukahara; Yuki Usui; Nobuyo Narita; Kazuo Hara; Kaoru Aoki; Masayuki Shimizu; Nobuhide Ogihara; Seiji Takanashi; Masanori Okamoto; Shinsuke Kobayashi; Norio Ishigaki; Koichi Nakamura; Hiroyuki Kato

Carbon nanotubes (CNTs) are attracting interest in various fields of science because they possess a high surface area-to-volume ratio and excellent electronic, mechanical, and thermal properties. Various medical applications of CNTs are expected, and the properties of CNTs have been greatly improved for use in biomaterials. However, the safety of CNTs remains unclear, which impedes their medical application. Our group is evaluating the biological responses of multiwall CNTs (MWCNTs) in vivo and in vitro for the promotion of tissue regeneration as safe scaffold materials. We recently showed that intracellular accumulation is important for the cytotoxicity of CNTs, and we reported the active physiological functions CNTs in cells. In this review, we describe the effects of CNTs in vivo and in vitro observed by our group from the standpoint of tissue engineering, and we introduce the findings of other research groups.


Journal of Proteomics | 2011

Toxicoproteomic evaluation of carbon nanomaterials in vitro

Hisao Haniu; Yoshikazu Matsuda; Yuki Usui; Kaoru Aoki; Masayuki Shimizu; Nobuhide Ogihara; Kazuo Hara; Masanori Okamoto; Seiji Takanashi; Norio Ishigaki; Koichi Nakamura; Hiroyuki Kato; Naoto Saito

Carbon nanotubes (CNTs) have already been successfully implemented in various fields, and they are anticipated to have innovative applications in medical science. However, CNTs have asbestos-like properties, such as their nanoscale size and high aspect ratio (>100). Moreover, CNTs may persist in the body for a long time. These properties are thought to cause malignant mesothelioma and lung cancer. However, based on conventional toxicity assessment systems, the carcinogenicity of asbestos and CNTs is unclear. The reason for late countermeasures against asbestos is that reliable, long-term safety assessments have not yet been developed by toxicologists. Therefore, a new type of long-term safety assessment, different from the existing methods, is needed for carbon nanomaterials. Recently, we applied a proteomic approach to the safety assessment of carbon nanomaterials. In this review, we discuss the basic concept of our approach, the results, the problems, and the possibility of a long-term safety assessment for carbon nanomaterials using the toxicoproteomic approach.

Collaboration


Dive into the Norio Ishigaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge