Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noriyo Tokuda is active.

Publication


Featured researches published by Noriyo Tokuda.


Journal of Biological Chemistry | 2006

Targeted Disruption of Gb3/CD77 Synthase Gene Resulted in the Complete Deletion of Globo-series Glycosphingolipids and Loss of Sensitivity to Verotoxins

Tetsuya Okuda; Noriyo Tokuda; Shin-ichiro Numata; Masafumi Ito; Michio Ohta; Kumiko Kawamura; Joëlle Wiels; Takeshi Urano; Orie Tajima; Keiko Furukawa; Koichi Furukawa

To examine whether globotriaosylceramide (Gb3/CD77) is a receptor for verotoxins (VTs) in vivo, sensitivity of Gb3/CD77 synthase null mutant mice to VT-2 and VT-1 was analyzed. Although wild-type mice died after administration of 0.02 μg of VT-2 or 1.0 μg of VT-1, the mutant mice showed no reaction to doses as much as 100 times that administered to wild types. Expression analysis of Gb3/CD77 in mouse tissues with antibody revealed that low, but definite, levels of Gb3/CD77 were expressed in the microvascular endothelial cells of the brain cortex and pia mater and in renal tubular capillaries. Corresponding to the Gb3/CD77 expression, tissue damage with edema, congestion, and cytopathic changes was observed, indicating that Gb3/CD77 (and its derivatives) exclusively function as a receptor for VTs in vivo. The lethal kinetics were similar regardless of lipopolysaccharide elimination in VT preparation, suggesting that basal Gb3/CD77 levels are sufficient for lethal effects of VTs.


Journal of Biological Chemistry | 2005

Mechanisms for the Apoptosis of Small Cell Lung Cancer Cells Induced by Anti-GD2 Monoclonal Antibodies ROLES OF ANOIKIS

Wei Aixinjueluo; Keiko Furukawa; Qing Zhang; Kazunori Hamamura; Noriyo Tokuda; Shoko Yoshida; Ryuzo Ueda; Koichi Furukawa

Anti-GD2 ganglioside antibodies could be a promising, novel therapeutic approach to the eradication of human small cell lung cancers, as anti-GD2 monoclonal antibodies (mAbs) induced apoptosis of small cell lung cancer cells in culture. In this study, we analyzed the mechanisms for the apoptosis of these cells by anti-GD2 mAbs and elucidated the mechanisms by which apoptosis signals were transduced via reduction in the phosphorylation levels of focal adhesion kinase (FAK) and the activation of a MAPK family member, p38, upon the antibody binding. Knock down of FAK resulted in apoptosis and p38 activation. The inhibition of p38 activity blocked antibody-induced apoptosis, indicating that p38 is involved in this process. Immunoprecipitation-immunoblotting analysis of immune precipitates with anti-FAK or anti-integrin antibodies using an anti-GD2 mAb revealed that GD2 could be precipitated with integrin and/or FAK. These results suggested that GD2, integrin, and FAK form a huge molecular complex across the plasma membrane. Taken together with the fact that GD2+ cells showed marked detachment from the plate during apoptosis, GD2+ small cell lung cancer cells seemed to undergo anoikis through the conformational changes of integrin molecules and subsequent FAK dephosphorylation.


Neurochemical Research | 2011

Regulatory Mechanisms of Nervous Systems with Glycosphingolipids

Koichi Furukawa; Yuhsuke Ohmi; Yuki Ohkawa; Noriyo Tokuda; Yuji Kondo; Orie Tajima; Keiko Furukawa

A number of studies have suggested functions of sialic acid-containing glycosphingolipids (gangliosides) in the nervous system. However, results of analyses of the mutant mice lacking gangliosides suggested that they play crucial roles in the maintenance of integrity and repair of the nervous tissues. Furthermore, results of double knockout mice lacking all gangliosides except GM3 (GM3-only mice) suggested that deficiency of gangliosides induced complement activation and inflammation, leading to neurodegeneration. Generation of triple knockout mice by mating GM3-only mice and C3-deficient mice verified the involvement of complement systems in the inflammation and neurodegeneration. For the mechanisms of the complement activation, functional disorders of complement-regulatory proteins such as CD55 and CD59, which belong to GPI-anchored proteins, should be main factors. These results suggested that normal composition of gangliosides is essential for the maintenance of lipid rafts. Therefore, it was suggested that regulation of the complement systems and suppression of the inflammation should be important for the treatment of neurodegeneration, having common aspects with other neurodegenerative diseases such as Alzheimer disease.


Glycobiology | 2013

β4GalT6 is involved in the synthesis of lactosylceramide with less intensity than β4GalT5

Noriyo Tokuda; Shin-ichiro Numata; Xiao Jin Li; Tomoko Nomura; Minoru Takizawa; Yuji Kondo; Yoriko Yamashita; Noboru Hashimoto; Tohru Kiyono; Takeshi Urano; Keiko Furukawa; Koichi Furukawa

Glycosphingolipids are expressed on the cell membrane and act as important factors in various events that occur across the plasma membrane. Lactosylceramide (LacCer) is synthesized from glucosylceramide and is a common precursor of various glycosphingolipids existing in whole body. Based on the enzyme purification, β1,4-galactosyltransferase 6 (B4galt6) cDNA was isolated as a LacCer synthase-coding gene in the rat brain. We generated B4galt6 gene knockout (KO) mice and analyzed their phenotypes to examine roles of β4GalT6. B4galt6 KO mice were born and grew up apparently normal. LacCer synthase activity and the composition of acidic glycosphingolipids in the brain were almost equivalent or minimally different between wild-type and KO mice. Studies by mouse embryonic fibroblasts (MEFs) revealed that the silencing of B4galt5 gene resulted in the marked reduction in LacCer synthase activity and this reduction was more severe in MEFs derived from B4galt6 KO mice than those from wild-type mice. These results suggested that β4GalT6 plays a role as a LacCer synthase, whereas β4GalT5 acts as a main enzyme for LacCer biosynthesis in these tissues and cells.


Biochemical and Biophysical Research Communications | 2012

pp-GalNAc-T13 induces high metastatic potential of murine Lewis lung cancer by generating trimeric Tn antigen

Yasuyuki Matsumoto; Qing Zhang; Kaoru Akita; Hiroshi Nakada; Kazunori Hamamura; Noriyo Tokuda; Akiko Tsuchida; Takeshi Matsubara; Tomoko Hori; Tetsuya Okajima; Keiko Furukawa; Takeshi Urano; Koichi Furukawa

In order to analyze the mechanisms for cancer metastasis, high metastatic sublines (H7-A, H7-Lu, H7-O, C4-sc, and C4-ly) were obtained by repeated injection of mouse Lewis lung cancer sublines H7 and C4 into C57BL/6 mice. These sublines exhibited increased proliferation and invasion activity in vitro. Ganglioside profiles exhibited lower expression of GM1 in high metastatic sublines than the parent lines. Then, we established GM1-Si-1 and GM1-Si-2 by stable silencing of GM1 synthase in H7 cells. These GM1-knockdown clones exhibited increased proliferation and invasion. Then, we explored genes that markedly altered in the expression levels by DNA microarray in the combination of C4 vs. C4-ly or H7 vs. H7 (GM1-Si). Consequently, pp-GalNAc-T13 gene was identified as up-regulated genes in the high metastatic sublines. Stable transfection of pp-GalNAc-T13 cDNA into C4 (T13-TF) resulted in increased invasion and motility. Then, immunoblotting and flow cytometry using various antibodies and lectins were performed. Only anti-trimeric Tn antibody (mAb MLS128), showed increased expression levels of trimeric Tn antigen in T13-TF clones. Moreover, immunoprecipitation/immunoblotting was performed by mAb MLS128, leading to the identification of an 80 kDa band carrying trimeric Tn antigen, i.e. Syndecan-1. Stable silencing of endogenous pp-GalNAc-T13 in C4-sc (T13-KD) revealed that primary tumors generated by subcutaneous injection of T13-KD clones showed lower coalescence to fascia and peritoneum, and significantly reduced lung metastasis than control clones. These data suggested that high expression of pp-GalNAc-T13 gene generated trimeric Tn antigen on Syndecan-1, leading to the enhanced metastasis.


Biochemical and Biophysical Research Communications | 2009

Glycosphingolipids are not pivotal receptors for Subtilase cytotoxin in vivo: sensitivity analysis with glycosylation-defective mutant mice.

Yuji Kondo; Noriyo Tokuda; Xiayan Fan; Tatsuyuki Yamashita; Koichi Honke; Hiroshi Takematsu; Akira Togayachi; Michio Ohta; Yasunori Kotzusumi; Hisashi Narimatsu; Orie Tajima; Keiko Furukaw; Koichi Furukawa

Certain glycosphingolipids play important roles as cellular receptor for bacterial toxins with high specificity and strong affinity. In particular AB(5) toxins exhibit typical modes of cell attachment with B5 and invasion and biological effects in cells with A subunit. Subtilase cytotoxin (SubAB) is the prototype of a recently discovered AB(5) cytotoxin family produced by certain strains of Shiga toxigenic Escherichia coli, and shows highly specific serine protease activity toward endoplasmic reticulum chaperone Bip. Since this toxin bound to a mimic of ganglioside GM2, GM2 has been considered to be possible receptor for SubAB. Using six kinds of glycosylation-defective knockout mice lacking certain group of glycosphingolipids, sensitivity to SubAB in vivo was analyzed. Consequently, all mutant mice died at around 70h after intraperitoneal injection of 10 microg (or 7.5 microg) of SubAB as well as wild type mice. These results indicated none of glycolipids are not pivotal receptor for SubAB in the body.


Glycoconjugate Journal | 2011

Efficient generation of useful monoclonal antibodies reactive with globotriaosylceramide using knockout mice lacking Gb3/CD77 synthase

Yuji Kondo; Noriyo Tokuda; Keiko Furukawa; Reiko Ando; Makoto Uchikawa; Qing Zhang; Fan Xiaoyan; Koichi Furukawa

Efficient generation of useful monoclonal antibodies (mAbs) with high performance in cancer therapeutics has been expected. Generation of mAbs reactive with globotriaosylceramide (Gb3/CD77) was compared between A/J mice and Gb3/CD77 synthase-deficient (A4GalT-knockout) mice by immunizing Gb3-liposome. Specificity and functions of established antibodies were examined by ELISA, TLC- immunostaining, cytotoxicity of cancer cells and immunoblotting. Compared with results with conventional mice, better generation of mAbs with higher functions has been achieved with A4GalT-knockout mice, i.e. acquisition of IgG class antibodies, activities in antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity, and aggregation activity toward a Burkitt’s lymphoma line Ramos. Binding of mAb k52 induced tyrosine phosphorylation of several proteins in Ramos cells. One of the strongest phosphorylation bands turned out to be c-Cbl. Pretreatment of B cell lines with mAbs resulted in the attenuation of BCR-mimicking signaling. All these results suggested that A4GalT-knockout mice are very useful to generate mAbs against globo-series glycolipids, and that suppressive signaling pathway driven by endogenous Gb3-ligand molecules might be present in B cells.


PLOS Genetics | 2018

Lactosylceramide synthases encoded by B4galt5 and 6 genes are pivotal for neuronal generation and myelin formation in mice

Toru Yoshihara; Hiroyuki Satake; Toshikazu Nishie; Nozomu Okino; Toshihisa Hatta; Hiroki Otani; Chie Naruse; Hiroshi Suzuki; Kazushi Sugihara; Eikichi Kamimura; Noriyo Tokuda; Keiko Furukawa; Koichi Fururkawa; Makoto Ito; Masahide Asano

It is uncertain which β4-galactosyltransferase (β4GalT; gene name, B4galt), β4GalT-5 and/or β4GalT-6, is responsible for the production of lactosylceramide (LacCer) synthase, which functions in the initial step of ganglioside biosynthesis. Here, we generated conditional B4galt5 knockout (B4galt5 cKO) mice, using Nestin-Cre mice, and crossed these with B4galt6 KO mice to generate B4galt5 and 6 double KO (DKO) mice in the central nervous system (CNS). LacCer synthase activity and major brain gangliosides were completely absent in brain homogenates from the DKO mice, although LacCer synthase activity was about half its normal level in B4galt5 cKO mice and B4galt6 KO mice. The DKO mice were born normally but they showed growth retardation and motor deficits at 2 weeks and died by 4 weeks of age. Histological analyses showed that myelin-associated proteins were rarely found localized in axons in the cerebral cortex, and axonal and myelin formation were remarkably impaired in the spinal cords of the DKO mice. Neuronal cells, differentiated from neurospheres that were prepared from the DKO mice, showed impairments in neurite outgrowth and branch formation, which can be explained by the fact that neurospheres from DKO mice could weakly interact with laminin due to lack of gangliosides, such as GM1a. Furthermore, the neurons were immature and perineuronal nets (PNNs) were poorly formed in DKO cerebral cortices. Our results indicate that LacCer synthase is encoded by B4galt5 and 6 genes in the CNS, and that gangliosides are indispensable for neuronal maturation, PNN formation, and axonal and myelin formation.


Glycoconjugate Journal | 2016

Immunization of A4galt-deficient mice with glycosphingolipids from renal cell cancers resulted in the generation of anti-sulfoglycolipid monoclonal antibodies.

Reiko Ando; Noriyo Tokuda; Tokunori Yamamoto; Kazutaka Ikeda; Noboru Hashimoto; Ryo Taguchi; Xiaoen Fan; Keiko Furukawa; Yukio Niimura; Akemi Suzuki; Momokazu Goto; Koichi Furukawa

In this study, we immunized Gb3/CD77 synthase gene (A4galt) knockout (KO) mice with glycosphingolipids (GSLs) extracted from 3 renal cell cancer (RCC) cell lines to raise monoclonal antibodies (mAbs) reactive with globo-series GSLs specifically expressed in RCCs. Although a number of mAbs reactive with globo-series GSLs were generated, they reacted with both RCC cell lines and normal kidney cells. When we analyzed recognized antigens by mAbs that were specifically reactive with RCC, but not with normal kidney cells at least on the cell surface, many of them turned out to be reactive with sulfoglycolipids. Eight out of 11 RCC-specific mAbs were reactive with SM2 alone, and the other 3 mAbs were more broadly reactive with sulfated glycolipids, i.e. SM3 and SM4 as well as SM2. In the immunohistochemistry, these anti-sulfoglycolipids mAbs showed RCC-specific reaction, with no or minimal reaction with adjacent normal tissues. Thus, immunization of A4galt KO mice with RCC-derived GSLs resulted in the generation of anti sulfated GSL mAbs, and these mAbs may be applicable for the therapeutics for RCC patients.


Seminars in Cell & Developmental Biology | 2004

Glycosphingolipids in engineered mice: insights into function

Koichi Furukawa; Noriyo Tokuda; Tetsuya Okuda; Orie Tajima; Keiko Furukawa

Collaboration


Dive into the Noriyo Tokuda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akira Togayachi

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hisashi Narimatsu

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge