Noriyuki Hirata
Hokkaido University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Noriyuki Hirata.
Developmental Cell | 2009
Futoshi Suizu; Yosuke Hiramuki; Fumihiko Okumura; Mami Matsuda; Akiko Joo Okumura; Noriyuki Hirata; Masumi Narita; Takashi Kohno; Jun Yokota; Miyuki Bohgaki; Chikashi Obuse; Shigetsugu Hatakeyama; Toshiyuki Obata; Masayuki Noguchi
The serine threonine kinase Akt is a core survival factor that underlies a variety of human diseases. Although regulatory phosphorylation and dephosphorylation have been well documented, the other posttranslational mechanisms that modulate Akt activity remain unclear. We show here that tetratricopeptide repeat domain 3 (TTC3) is an E3 ligase that interacts with Akt. TTC3 contains a canonical RING finger motif, a pair of tetratricopeptide motifs, a putative Akt phosphorylation site, and nuclear localization signals, and is encoded by a gene within the Down syndrome (DS) critical region on chromosome 21. TTC3 is an Akt-specific E3 ligase that binds to phosphorylated Akt and facilitates its ubiquitination and degradation within the nucleus. Moreover, DS cells exhibit elevated TTC3 expression, reduced phosphorylated Akt, and accumulation in the G(2)M phase, which can be reversed by TTC3 siRNA or Myr-Akt. Thus, interaction between TTC3 and Akt may contribute to the clinical symptoms of DS.
PLOS ONE | 2012
Masashi Satoh; Yasuhiro Andoh; Christopher Stuart Clingan; Hisako Ogura; Satoshi Fujii; Koji Eshima; Toshinori Nakayama; Masaru Taniguchi; Noriyuki Hirata; Naoki Ishimori; Hiroyuki Tsutsui; Kazunori Onoé; Kazuya Iwabuchi
The progression of obesity is accompanied by a chronic inflammatory process that involves both innate and acquired immunity. Natural killer T (NKT) cells recognize lipid antigens and are also distributed in adipose tissue. To examine the involvement of NKT cells in the development of obesity, C57BL/6 mice (wild type; WT), and two NKT-cell-deficient strains, Jα18−/− mice that lack the type I subset and CD1d−/− mice that lack both the type I and II subsets, were fed a high fat diet (HFD). CD1d−/− mice gained the least body weight with the least weight in perigonadal and brown adipose tissue as well as in the liver, compared to WT or Jα18−/− mice fed an HFD. Histologically, CD1d−/− mice had significantly smaller adipocytes and developed significantly milder hepatosteatosis than WT or Jα18−/− mice. The number of NK1.1+TCRβ+ cells in adipose tissue increased when WT mice were fed an HFD and were mostly invariant Vα14Jα18-negative. CD11b+ macrophages (Mφ) were another major subset of cells in adipose tissue infiltrates, and they were divided into F4/80high and F4/80low cells. The F4/80low-Mφ subset in adipose tissue was increased in CD1d−/− mice, and this population likely played an anti-inflammatory role. Glucose intolerance and insulin resistance in CD1d−/− mice were not aggravated as in WT or Jα18−/− mice fed an HFD, likely due to a lower grade of inflammation and adiposity. Collectively, our findings provide evidence that type II NKT cells initiate inflammation in the liver and adipose tissue and exacerbate the course of obesity that leads to insulin resistance.
Molecular Immunology | 2008
Noriyuki Hirata; Yoshiki Yanagawa; Takashi Ebihara; Tsukasa Seya; Satoshi Uematsu; Shizuo Akira; Fumie Hayashi; Kazuya Iwabuchi; Kazunori Onoé
Toll-like receptor (TLR) ligands, i.e. lipopolysaccharide (LPS), induce dendritic cell (DC) production of both inflammatory and anti-inflammatory cytokines including interleukin (IL)-12, tumor necrosis factor (TNF)-alpha, and IL-10. The balance of inflammatory versus anti-inflammatory cytokines appears to be crucial to control immune homeostasis. In the present study, we investigated TLR-mediated regulation of inflammatory versus anti-inflammatory cytokine production using murine bone marrow derived conventional DCs. Standard LPS (sLPS) that contains lipoprotein, a TLR2 ligand, induced vigorous production of both IL-10 and IL-12 p40 by DCs. Highly purified LPS (ultra-pure LPS, upLPS) also induced vigorous production of IL-12 p40, but markedly low IL-10 production. Thus, signal deficiency through TLR2 appeared to result in marked reduction in DC production of IL-10 but not IL-12 p40 upon stimulation with upLPS. To examine this possibility, DCs were stimulated with Pam3CSK4, a synthetic ligand of TLR2, in addition to stimulation with upLPS. It was shown that Pam3CSK4 alone failed to induce IL-10 production. However, Pam3CSK4 synergistically enhanced upLPS-induced DC production of IL-10 but neither IL-12 p40 nor TNF-alpha. Extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein kinase (MAPK), and c-jun N-terminal kinase (JNK)1/2 in DCs were significantly activated by upLPS stimulation. The upLPS-induced activities of these MAPKs were considerably enhanced by additional stimulation with Pam3CSK4. Blocking either p38 MAPK or JNK1/2 pathway completely inhibited the synergistic enhancement of the IL-10 production by DCs upon upLPS and Pam3CSK4 stimulation. Thus, cooperated stimulation of these MAPKs via TLR4 and TLR2 appeared to induce selective synergy in anti-inflammatory cytokine production by murine conventional DCs.
Biochimica et Biophysica Acta | 2014
Masayuki Noguchi; Noriyuki Hirata; Futoshi Suizu
The serine threonine kinase AKT plays a central role in the regulation of cell survival in a variety of human neoplastic diseases. A series of studies have revealed a connection between AKT signaling and two important protein degradation pathways in mammalian cells: the ubiquitin-proteasome system and autophagy. Two distinct ubiquitination systems have been reported to regulate AKT signaling: K63-linked ubiquitination, which promotes the oncogenic activation of AKT, and K48-linked ubiquitination, which triggers the proteasomal degradation of phosphorylated AKT. Autophagy is an evolutionarily conserved mechanism for the gross disposal and recycling of intracellular proteins in mammalian cells. AKT signaling may play a regulatory role in autophagy; however, the underlying mechanisms have not been fully clarified. Recently, AKT was shown to phosphorylate key molecules involved in the regulation of autophagy. Furthermore, lysosomal co-localization of the AKT-Phafin2 complex is reportedly critical for the induction of autophagy. In this review, we will discuss the connection between AKT, a core intracellular survival regulator, and two major intracellular proteolytic signaling pathways in mammalian cells.
Biochemical and Biophysical Research Communications | 2010
Mami Matsuda; Futoshi Suizu; Noriyuki Hirata; Tadaaki Miyazaki; Chikashi Obuse; Masayuki Noguchi
Avian influenza viruses belong to the genus influenza A virus of the family Orthomyxoviridae. The influenza virus consists of eight segmented minus stranded RNA that encode 11 known proteins. Among the 11 viral proteins, NS1 (non-structural protein 1, encoded on segment 8) has been implicated in the regulation of several important intra-cellular functions. In this report, we investigated the functional interaction of NS1 with serine threonine kinase Akt, a core intra-cellular survival regulator. In co-immunoprecipitation assays and GST pull-down assays, NS1 directly interacted with Akt. The interaction was mediated primarily through the Akt-PH (Pleckstrin Homology) domain and the RNA-binding domain of NS1. NS1 preferentially interacted with phosphorylated Akt, but not with non-phosphorylated Akt. Functionally, the NS1-Akt interaction enhanced Akt activity both in the intra-cellular context and in in vitro Akt kinase assays. Confocal microscopic analysis revealed that phosphorylated Akt interacted with NS1 during the interphase of the cell cycle predominantly within the nucleus. Finally, mass spectrometric analysis demonstrated the position at Thr215 of NS1 protein is primary phosphorylation target site through Akt activation. The results together supported the functional importance of influenza virus NS1 with Akt, a core intra-cellular survival regulator.
Cellular Immunology | 2009
Noriyuki Hirata; Yoshiki Yanagawa; Kazuya Iwabuchi; Kazunori Onoé
In this study, we examined the role of JAKs in regulation of inflammatory versus anti-inflammatory cytokine balance in murine conventional dendritic cells (DCs). Highly purified lipopolysaccharide (upLPS) combined with imiquimod (IQ) synergistically induced IL-10 production by DCs, while each ligand alone showed a slight effect on the IL-10 production. Marked phosphorylation of JAK2, STAT1 and STAT3 was detected in DCs following upLPS plus IQ stimulation. Blocking the JAK pathway by JAK inhibitor I (JAKi) resulted in significant inhibition of IL-10 production by the DCs. However, JAKi showed negligible effect on the DC production of IL-12, IL-6 and TNF-alpha. JAKi completely blocked the TLR-mediated STATs activation, and attenuated the activation of Akt, a downstream effector of PI3K, in DCs stimulated by upLPS plus IQ. LY294002, a specific inhibitor of PI3K, markedly inhibited the DC production of IL-10. Thus, JAK-PI3K axis appeared to be responsible for the IL-10 production by DCs.
Oncotarget | 2017
Kei Ihira; Peixin Dong; Ying Xiong; Hidemichi Watari; Yosuke Konno; Sharon J.B. Hanley; Masayuki Noguchi; Noriyuki Hirata; Futoshi Suizu; Takahiro Yamada; Masataka Kudo; Noriaki Sakuragi
EZH2 inhibition and reactivation of tumor suppressor microRNAs (miRNAs) represent attractive anti-cancer therapeutic strategies. We found that EZH2-suppressed let 7b and miR-361, two likely tumor suppressors, inhibited endometrial cancer (EC) cell proliferation and invasion, and abrogated cancer stem cell-like properties. In EC cells, EZH2 induced and functioned together with YY1 to epigenetically suppress miR-361, which upregulated Twist, a direct target of miR-361. Treating EC cells with GSK343, a specific EZH2 inhibitor, mimicked the effects of siRNA-mediated EZH2 knockdown, upregulating miR-361 and downregulating Twist expression. Combining GSK343 with 5 AZA-2′-deoxycytidine synergistically suppressed cell proliferation and invasion in vitro, and decreased tumor size and weight in EC cell xenografted mice. Quantitative real-time PCR analysis of 24 primary EC tissues showed that lower let-7b and miR-361 levels were associated with worse patient outcomes. These results were validated in a larger EC patient dataset from The Cancer Genome Atlas. Our findings suggest that EZH2 drives EC progression by regulating miR-361/Twist signaling, and support EZH2 inhibition as a promising anti-EC therapeutic strategy.
PLOS ONE | 2014
Mami Matsuda-Lennikov; Futoshi Suizu; Noriyuki Hirata; Manabu Hashimoto; Kohki Kimura; Tadashi Nagamine; Yoichiro Fujioka; Yusuke Ohba; Toshihiko Iwanaga; Masayuki Noguchi
Autophagy is an evolutionarily conserved mechanism for the gross disposal of intracellular proteins in mammalian cells and dysfunction in this pathway has been associated with human disease. Although the serine threonine kinase Akt is suggested to play a role in this process, little is known about the molecular mechanisms by which Akt induces autophagy. Using a yeast two-hybrid screen, Phafin2 (EAPF or PLEKHF2), a lysosomal protein with a unique structure of N-terminal PH (pleckstrin homology) domain and C-terminal FYVE (Fab 1, YOTB, Vac 1, and EEA1) domain was found to interact with Akt. A sucrose gradient fractionation experiment revealed that both Akt and Phafin2 co-existed in the same lysosome enriched fraction after autophagy induction. Confocal microscopic analysis and BiFC analysis demonstrated that both Akt and Phafin2 accumulate in the lysosome after induction of autophagy. BiFC analysis using PtdIns (3)P interaction defective mutant of Phafin2 demonstrated that lysosomal accumulation of the Akt-Phafin2 complex and subsequent induction of autophagy were lysosomal PtdIns (3)P dependent events. Furthermore, in murine macrophages, both Akt and Phafin2 were required for digestion of fluorescent bacteria and/or LPS-induced autophagy. Taken together, these findings establish that lysosomal accumulation of Akt and Phafin2 is a critical step in the induction of autophagy via an interaction with PtdIns (3)P.
The EMBO Journal | 2016
Futoshi Suizu; Noriyuki Hirata; Kohki Kimura; Tatsuma Edamura; Tsutomu Tanaka; Satoko Ishigaki; Thoria Donia; Hiroko Noguchi; Toshihiko Iwanaga; Masayuki Noguchi
A primary cilium is a microtubule‐based sensory organelle that plays an important role in human development and disease. However, regulation of Akt in cilia and its role in ciliary development has not been demonstrated. Using yeast two‐hybrid screening, we demonstrate that Inversin (INVS) interacts with Akt. Mutation in the INVS gene causes nephronophthisis type II (NPHP2), an autosomal recessive chronic tubulointerstitial nephropathy. Co‐immunoprecipitation assays show that Akt interacts with INVS via the C‐terminus. In vitro kinase assays demonstrate that Akt phosphorylates INVS at amino acids 864–866 that are required not only for Akt interaction, but also for INVS dimerization. Co‐localization of INVS and phosphorylated form of Akt at the basal body is augmented by PDGF‐AA. Akt‐null MEF cells as well as siRNA‐mediated inhibition of Akt attenuated ciliary growth, which was reversed by Akt reintroduction. Mutant phosphodead‐ or NPHP2‐related truncated INVS, which lack Akt phosphorylation sites, suppress cell growth and exhibit distorted lumen formation and misalignment of spindle axis during cell division. Further studies will be required for elucidating functional interactions of Akt–INVS at the primary cilia for identifying the molecular mechanisms underlying NPHP2.
Oncogenesis | 2013
Manabu Hashimoto; Futoshi Suizu; W Tokuyama; H Noguchi; Noriyuki Hirata; Mami Matsuda-Lennikov; Tatsuma Edamura; M Masuzawa; Noriko Gotoh; Shinya Tanaka; Miki Noguchi
Protooncogene T-cell leukemia 1 (TCL1), which is implicated in human T-cell prolymphocytic leukemia (T-PLL), interacts with Akt and enhances its kinase activity, functioning as an Akt kinase co-activator. Two major isoforms of TCL1 Protooncogenes (TCL1 and TCL1b) are present adjacent to each other on human chromosome 14q.32. In human T-PLL, both TCL1 and TCL1b are activated by chromosomal translocation. Moreover, TCL1b-transgenic mice have never been created. Therefore, it remains unclear whether TCL1b itself, independent of TCL1, exhibits oncogenicity. In co-immunoprecipitation assays, both ectopic and endogenous TCL1b interacted with Akt. In in vitro Akt kinase assays, TCL1b enhanced Akt kinase activity in dose- and time-dependent manners. Bioinformatics approaches utilizing multiregression analysis, cluster analysis, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway mapping, Venn diagrams and Gene Ontology (GO) demonstrated that TCL1b showed highly homologous gene-induction signatures similar to Myr-Akt or TCL1. TCL1b exhibited oncogenicity in in vitro colony-transformation assay. Further, two independent lines of β-actin promoter-driven TCL1b-transgenic mice developed angiosarcoma on the intestinal tract. Angiosarcoma is a rare form of cancer in humans with poor prognosis. Using immunohistochemistry, 11 out of 13 human angiosarcoma samples were positively stained with both anti-TCL1b and anti-phospho-Akt antibodies. Consistently, in various cancer tissues, 69 out of 146 samples were positively stained with anti-TCL1b, out of which 46 were positively stained with anti-phospho-Akt antibodies. Moreover, TCL1b structure-based inhibitor ‘TCL1b-Akt-in’ inhibited Akt kinase activity in in vitro kinase assays and PDGF (platelet-derived growth factor)-induced Akt kinase activities—in turn, ‘TCL1b-Akt-in’ inhibited cellular proliferation of sarcoma. The current study disclosed TCL1b bears oncogenicity and hence serves as a novel therapeutic target for human neoplastic diseases.