Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noriyuki Suetsugu is active.

Publication


Featured researches published by Noriyuki Suetsugu.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana

Noriyuki Suetsugu; Noboru Yamada; Takatoshi Kagawa; Hisashi Yonekura; Taro Q.P. Uyeda; Akeo Kadota; Masamitsu Wada

Organelle movement is essential for efficient cellular function in eukaryotes. Chloroplast photorelocation movement is important for plant survival as well as for efficient photosynthesis. Chloroplast movement generally is actin dependent and mediated by blue light receptor phototropins. In Arabidopsis thaliana, phototropins mediate chloroplast movement by regulating short actin filaments on chloroplasts (cp-actin filaments), and the chloroplast outer envelope protein CHUP1 is necessary for cp-actin filament accumulation. However, other factors involved in cp-actin filament regulation during chloroplast movement remain to be determined. Here, we report that two kinesin-like proteins, KAC1 and KAC2, are essential for chloroplasts to move and anchor to the plasma membrane. A kac1 mutant showed severely impaired chloroplast accumulation and slow avoidance movement. A kac1kac2 double mutant completely lacked chloroplast photorelocation movement and showed detachment of chloroplasts from the plasma membrane. KAC motor domains are similar to those of the kinesin-14 subfamily (such as Ncd and Kar3) but do not have detectable microtubule-binding activity. The C-terminal domain of KAC1 could interact with F-actin in vitro. Instead of regulating microtubules, KAC proteins mediate chloroplast movement via cp-actin filaments. We conclude that plants have evolved a unique mechanism to regulate actin-based organelle movement using kinesin-like proteins.


Plant and Cell Physiology | 2013

Evolution of three LOV blue light receptor families in green plants and photosynthetic stramenopiles: phototropin, ZTL/FKF1/LKP2 and aureochrome.

Noriyuki Suetsugu; Masamitsu Wada

Many organisms, including bacteria, fungi, animal, plants and algae, utilize blue light to adapt to a fluctuating light environment. Plants and algae, and photosynthetic stramenopiles in particular, require light energy for photosynthesis and have thus evolved a range of sophisticated light-sensing systems to utilize light information efficiently for growth, development and physiological responses. LOV (light, oxygen or voltage) domain photoreceptors are widely distributed among prokaryotic and eukaryotic organisms, and the number of specific LOV photoreceptors are increased in certain taxa. In this review, we summarize the molecular basis and physiological functions of three different families of LOV blue light receptors specific to green plants and photosynthetic stramenopiles: phototropin, ZEITLUPE/FLAVIN-BINDING, KELCH REPEAT, F-BOX 1/LOV KELCH PROTEIN 2 (ZTL/FKF1/LKP2) and aureochrome.


Plant and Cell Physiology | 2013

Both Phototropin 1 and 2 Localize on the Chloroplast Outer Membrane with Distinct Localization Activity

Sam-Geun Kong; Noriyuki Suetsugu; Shingo Kikuchi; Masato Nakai; Akira Nagatani; Masamitsu Wada

Chloroplasts change their position to adapt cellular activities to fluctuating environmental light conditions. Phototropins (phot1 and phot2 in Arabidopsis) are plant-specific blue light photoreceptors that perceive changes in light intensity and direction, and mediate actin-based chloroplast photorelocation movements. Both phot1 and phot2 regulate the chloroplast accumulation response, while phot2 is mostly responsible for the regulation of the avoidance response. Although it has been widely accepted that distinct intracellular localizations of phototropins are implicated in the specificity, the mechanism underlying the phot2-specific avoidance response has remained elusive. In this study, we examined the relationship of the phot2 localization pattern to the chloroplast photorelocation movement. First, the fusion of a nuclear localization signal with phot2, which effectively reduced the amount of phot2 in the cytoplasm, retained the activity for both the accumulation and avoidance responses, indicating that membrane-localized phot2 but not cytoplasmic phot2 is functional to mediate the responses. Importantly, some fractions of phot2, and of phot1 to a lesser extent, were localized on the chloroplast outer membrane. Moreover, the deletion of the C-terminal region of phot2, which was previously shown to be defective in blue light-induced Golgi localization and avoidance response, affected the localization pattern on the chloroplast outer membrane. Taken together, these results suggest that dynamic phot2 trafficking from the plasma membrane to the Golgi apparatus and the chloroplast outer membrane might be involved in the avoidance response.


Photochemistry and Photobiology | 2006

Phytochrome-dependent photomovement responses mediated by phototropin family proteins in cryptogam plants.

Noriyuki Suetsugu; Masamitsu Wada

In this review, we describe the regulation of photomovement responses by phototropin and phytochrome photoreceptors. The blue light receptor phototropin mediates various photomovement responses such as phototropism, chloroplast movement and stomatal opening. In cryptogamic plants including ferns, mosses and green alga, red as well as blue light mediates phototropism and chloroplast movement. The red/far‐red light reversibility suggests the involvement of phytochrome in these responses. Thereby, plant growth is presumably promoted by coordinating these photomovements to capture efficiently light for photosynthesis.


The Plant Cell | 2013

Rapid Severing and Motility of Chloroplast-Actin Filaments Are Required for the Chloroplast Avoidance Response in Arabidopsis

Sam-Geun Kong; Yoshiyuki Arai; Noriyuki Suetsugu; Toshio Yanagida; Masamitsu Wada

This study reveals a mechanism underlying chloroplast-actin filament dynamics during their disappearance processes, which are needed for the chloroplasts to produce a rapid avoidance response to strong blue light. These processes are specifically regulated by light intensity and position through phot2 and are different from those of cortical actin filaments. Phototropins (phot1 and phot2 in Arabidopsis thaliana) relay blue light intensity information to the chloroplasts, which move toward weak light (the accumulation response) and away from strong light (the avoidance response). Chloroplast-actin (cp-actin) filaments are vital for mediating these chloroplast photorelocation movements. In this report, we examine in detail the cp-actin filament dynamics by which the chloroplast avoidance response is regulated. Although stochastic dynamics of cortical actin fragments are observed on the chloroplasts, the basic mechanisms underlying the disappearance (including severing and turnover) of the cp-actin filaments are regulated differently from those of cortical actin filaments. phot2 plays a pivotal role in the strong blue light–induced severing and random motility of cp-actin filaments, processes that are therefore essential for asymmetric cp-actin formation for the avoidance response. In addition, phot2 functions in the bundling of cp-actin filaments that is induced by dark incubation. By contrast, the function of phot1 is dispensable for these responses. Our findings suggest that phot2 is the primary photoreceptor involved in the rapid reorganization of cp-actin filaments that allows chloroplasts to change direction rapidly and control the velocity of the avoidance movement according to the light’s intensity and position.


Plant Physiology | 2014

Phototropin Encoded by a Single-Copy Gene Mediates Chloroplast Photorelocation Movements in the Liverwort Marchantia polymorpha

Aino Komatsu; Mika Terai; Kimitsune Ishizaki; Noriyuki Suetsugu; Hidenori Tsuboi; Ryuichi Nishihama; Katsuyuki T. Yamato; Masamitsu Wada; Takayuki Kohchi

Phototropin, encoded by a single-copy gene, mediates chloroplast movements in Marchantia polymorpha, and its expression can rescue the phot mutant defects in vascular plants. Blue-light-induced chloroplast photorelocation movement is observed in most land plants. Chloroplasts move toward weak-light-irradiated areas to efficiently absorb light (the accumulation response) and escape from strong-light-irradiated areas to avoid photodamage (the avoidance response). The plant-specific kinase phototropin (phot) is the blue-light receptor for chloroplast movements. Although the molecular mechanisms for chloroplast photorelocation movement have been analyzed, the overall aspects of signal transduction common to land plants are still unknown. Here, we show that the liverwort Marchantia polymorpha exhibits the accumulation and avoidance responses exclusively induced by blue light as well as specific chloroplast positioning in the dark. Moreover, in silico and Southern-blot analyses revealed that the M. polymorpha genome encodes a single PHOT gene, MpPHOT, and its knockout line displayed none of the chloroplast photorelocation movements, indicating that the sole MpPHOT gene mediates all types of movement. Mpphot was localized on the plasma membrane and exhibited blue-light-dependent autophosphorylation both in vitro and in vivo. Heterologous expression of MpPHOT rescued the defects in chloroplast movement of phot mutants in the fern Adiantum capillus-veneris and the seed plant Arabidopsis (Arabidopsis thaliana). These results indicate that Mpphot possesses evolutionarily conserved regulatory activities for chloroplast photorelocation movement. M. polymorpha offers a simple and versatile platform for analyzing the fundamental processes of phototropin-mediated chloroplast photorelocation movement common to land plants.


Plant and Cell Physiology | 2012

The KAC Family of Kinesin-Like Proteins is Essential for the Association of Chloroplasts with the Plasma Membrane in Land Plants

Noriyuki Suetsugu; Yoshikatsu Sato; Hidenori Tsuboi; Masahiro Kasahara; Takato Imaizumi; Takatoshi Kagawa; Yuji Hiwatashi; Mitsuyasu Hasebe; Masamitsu Wada

Chloroplasts require association with the plasma membrane for movement in response to light and for appropriate positioning within the cell to capture photosynthetic light efficiently. In Arabidopsis, CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1), KINESIN-LIKE PROTEIN FOR ACTIN-BASED CHLOROPLAST MOVEMENT 1 (KAC1) and KAC2 are required for both the proper movement of chloroplasts and the association of chloroplasts with the plasma membrane, through the reorganization of short actin filaments located on the periphery of the chloroplasts. Here, we show that KAC and CHUP1 orthologs (AcKAC1, AcCHUP1A and AcCHUP1B, and PpKAC1 and PpKAC2) play important roles in chloroplast positioning in the fern Adiantum capillus-veneris and the moss Physcomitrella patens. The knockdown of AcKAC1 and two AcCHUP1 genes induced the aggregation of chloroplasts around the nucleus. Analyses of A. capillus-veneris mutants containing perinuclear-aggregated chloroplasts confirmed that AcKAC1 is required for chloroplast-plasma membrane association. In addition, P. patens lines in which two KAC genes had been knocked out showed an aggregated chloroplast phenotype similar to that of the fern kac1 mutants. These results indicate that chloroplast positioning and movement are mediated through the activities of KAC and CHUP1 proteins, which are conserved in land plants.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Actin-dependent plastid movement is required for motive force generation in directional nuclear movement in plants

Takeshi Higa; Noriyuki Suetsugu; Sam-Geun Kong; Masamitsu Wada

Significance High-light–induced avoidance movements of chloroplasts and nuclei from the leaf cell surface to the side walls are essential for minimizing damage from strong visible light and UV light, respectively. Phototropins, blue-light photoreceptors, regulate short actin filaments on the plasma membrane side of chloroplasts, allowing chloroplasts to move autonomously in response to light. We show that some plastids attach to the nucleus, and that their actin-dependent movements are essential for light-induced nuclear movement in the Arabidopsis leaf cell. Indeed, nuclei without plastid attachments did not exhibit blue-light-induced movement. Our results demonstrate that nuclei are incapable of autonomously moving in response to light, and that the close association between nuclei and plastids is essential for their cooperative movements and functions. Nuclear movement and positioning are indispensable for most cellular functions. In plants, strong light-induced chloroplast movement to the side walls of the cell is essential for minimizing damage from strong visible light. Strong light-induced nuclear movement to the side walls also has been suggested to play an important role in minimizing damage from strong UV light. Although both movements are regulated by the same photoreceptor, phototropin, the precise cytoskeleton-based force generation mechanism for nuclear movement is unknown, in contrast to the short actin-based mechanism of chloroplast movement. Here we show that actin-dependent movement of plastids attached to the nucleus is essential for light-induced nuclear movement in the Arabidopsis leaf epidermal cell. We found that nuclei are always associated with some plastids, and that light-induced nuclear movement is correlated with the dynamics of short actin filaments associated with plastids. Indeed, nuclei without plastid attachments do not exhibit blue light-induced directional movement. Our results demonstrate that nuclei are incapable of autonomously moving in response to light, whereas attached plastids carry nuclei via the short actin filament-based movement. Thus, the close association between nuclei and plastids is essential for their cooperative movements and functions.


Plant and Cell Physiology | 2013

Antagonistic Regulation of Leaf Flattening by Phytochrome B and Phototropin in Arabidopsis thaliana

Toshiaki Kozuka; Noriyuki Suetsugu; Masamitsu Wada; Akira Nagatani

Light is one of the most important environmental factors regulating the growth and development of leaves. As the primary photosynthetic organs, leaves have a laminar structure in many dicotyledonous plants. The regulation of leaf flatness is a key mechanism for the efficient absorption of light under low light conditions. In the present study, we demonstrated that phytochrome B (phyB) promoted the development of curled leaves. Wild-type leaves gently curled downwards under white light, whereas the phyB-deficient mutant (phyB) constitutively exhibited flatter leaves. In the wild type, leaf flattening was promoted by end-of-day far-red light (EODFR) treatment, which rapidly eliminates the active Pfr phytochrome. Interestingly, the curled-leaf phenotype in a phototropin-deficient mutant was almost completely suppressed by the phyB mutation as well as by EODFR. Thus, phototropin promotes leaf flattening by suppressing the leaf-curling activity of phyB. We examined the downstream components of phyB and phototropin to assess their antagonistic regulation of leaf flatness further. Consequently, we found that a phototropin signaling transducer, NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3), was required to promote leaf flattening in phyB. The present study provides new insights into a mechanism in which leaf flatness is regulated in response to different light environmental cues.


Plant Signaling & Behavior | 2010

Why have chloroplasts developed a unique motility system

Noriyuki Suetsugu; Valerian V. Dolja; Masamitsu Wada

Organelle movement in plants is dependent on actin filaments with most of the organelles being transported along the actin cables by class XI myosins. Although chloroplast movement is also actin filament-dependent, a potential role of myosin motors in this process is poorly understood. Interestingly, chloroplasts can move in any direction, and change the direction within short time periods, suggesting that chloroplasts use the newly formed actin filaments rather than preexisting actin cables. Furthermore, the data on myosin gene knockouts and knockdowns in Arabidopsis and tobacco do not support myosins’ XI role in chloroplast movement. Our recent studies revealed that chloroplast movement and positioning are mediated by the short actin filaments localized at chloroplast periphery (cp-actin filaments) rather than cytoplasmic actin cables. The accumulation of cp-actin filaments depends on kinesin-like proteins, KAC1 and KAC2, as well as on a chloroplast outer membrane protein CHUP1. We propose that plants evolved a myosin XI-independent mechanism of the actin-based chloroplast movement that is distinct from the mechanism used by other organelles.

Collaboration


Dive into the Noriyuki Suetsugu's collaboration.

Top Co-Authors

Avatar

Masamitsu Wada

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akeo Kadota

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge