Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norma V. Solis is active.

Publication


Featured researches published by Norma V. Solis.


Cellular Microbiology | 2008

Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions

Clarissa J. Nobile; Norma V. Solis; Carter L. Myers; Allison Fay; Jean-Sebastien Deneault; André Nantel; Aaron P. Mitchell; Scott G. Filler

pH‐responsive transcription factors of the Rim101/PacC family govern virulence in many fungal pathogens. These family members control expression of target genes with diverse functions in growth, morphology and environmental adaptation, so the mechanistic relationship between Rim101/PacC and infection is unclear. We have focused on Rim101 from Candida albicans, which we find to be required for virulence in an oropharyngeal candidiasis model. Rim101 affects the yeast–hypha morphological transition, a major virulence requirement in disseminated infection models. However, virulence in the oropharyngeal candidiasis model is independent of the yeast–hypha transition because it is unaffected by an nrg1 mutation, which prevents formation of yeast cells. Here we have identified Rim101 target genes in an nrg1Δ/Δ mutant background and surveyed function using an overexpression‐rescue approach. Increased expression of Rim101 target genes ALS3, CHT2, PGA7/RBT6, SKN1 or ZRT1 can partially restore pathogenic interaction of a rim101Δ/Δ mutant with oral epithelial cells. Four of these five genes govern cell wall structure. Our results indicate that Rim101‐dependent cell wall alteration contributes to C. albicans pathogenic interactions with oral epithelial cells, independently of cell morphology.


Eukaryotic Cell | 2007

Requirement for Candida albicans Sun41 in Biofilm Formation and Virulence

Carmelle T. Norice; Frank J. Smith; Norma V. Solis; Scott G. Filler; Aaron P. Mitchell

ABSTRACT The cell wall of Candida albicans lies at the crossroads of pathogenicity and therapeutics. It contributes to pathogenicity through adherence and invasion; it is the target of both chemical and immunological antifungal strategies. We have initiated a dissection of cell wall function through targeted insertional mutagenesis of cell wall-related genes. Among 25 such genes, we were unable to generate homozygous mutations in 4, and they may be essential for viability. We created homozygous mutations in the remaining 21 genes. Insertion mutations in SUN41, Orf19.5412, Orf19.1277, MSB2, Orf19.3869, and WSC1 caused hypersensitivity to the cell wall inhibitor caspofungin, while two different ecm33 insertions caused mild caspofungin resistance. Insertion mutations in SUN41 and Orf19.5412 caused biofilm defects. Through analysis of homozygous sun41Δ/sun41Δ deletion mutants and sun41Δ/sun41Δ+pSUN41-complemented strains, we verified that Sun41 is required for biofilm formation and normal caspofungin tolerance. The sun41Δ/sun41Δ mutant had altered expression of four cell wall damage response genes, thus suggesting that it suffers a cell wall structural defect. Sun41 is required for inducing disease, because the mutant was severely attenuated in mouse models of disseminated and oropharyngeal candidiasis. Although the mutant produced aberrant hyphae, it had no defect in damaging endothelial or epithelial cells, unlike many other hypha-defective mutants. We suggest that the sun41Δ/sun41Δ cell wall defect is the primary cause of its attenuated virulence. As a small fungal surface protein with predicted glucosidase activity, Sun41 represents a promising therapeutic target.


PLOS Pathogens | 2010

Host Cell Invasion and Virulence Mediated by Candida albicans Ssa1

Jianing N. Sun; Norma V. Solis; Quynh T. Phan; Jashanjot Singh Bajwa; H. Kashleva; Angela Thompson; Yaoping Liu; Anna Dongari-Bagtzoglou; Mira Edgerton; Scott G. Filler

Candida albicans Ssa1 and Ssa2 are members of the HSP70 family of heat shock proteins that are expressed on the cell surface and function as receptors for antimicrobial peptides such as histatins. We investigated the role of Ssa1 and Ssa2 in mediating pathogenic host cell interactions and virulence. A C. albicans ssa1Δ/Δ mutant had attenuated virulence in murine models of disseminated and oropharyngeal candidiasis, whereas an ssa2Δ/Δ mutant did not. In vitro studies revealed that the ssa1Δ/Δ mutant caused markedly less damage to endothelial cells and oral epithelial cell lines. Also, the ssa1Δ/Δ mutant had defective binding to endothelial cell N-cadherin and epithelial cell E-cadherin, receptors that mediate host cell endocytosis of C. albicans. As a result, this mutant had impaired capacity to induce its own endocytosis by endothelial cells and oral epithelial cells. Latex beads coated with recombinant Ssa1 were avidly endocytosed by both endothelial cells and oral epithelial cells, demonstrating that Ssa1 is sufficient to induce host cell endocytosis. These results indicate that Ssa1 is a novel invasin that binds to host cell cadherins, induces host cell endocytosis, and is critical for C. albicans to cause maximal damage to host cells and induce disseminated and oropharyngeal disease.


Nature Protocols | 2012

Mouse model of oropharyngeal candidiasis

Norma V. Solis; Scott G. Filler

Oropharyngeal candidiasis is a frequent cause of morbidity in patients with defects in cell-mediated immunity or saliva production. Animal models of this infection are important for studying disease pathogenesis and evaluating vaccines and antifungal therapies. Here we describe a simple mouse model of oropharyngeal candidiasis. Mice are rendered susceptible to oral infection by injection with cortisone acetate and then inoculated by placing a swab saturated with Candida albicans sublingually. This process results in a reproducible level of infection, the histopathology of which mimics that of pseudomembranous oropharyngeal candidiasis in humans. By using this model, data are obtained after 5–9 d of work.


Proceedings of the National Academy of Sciences of the United States of America | 2012

EGFR and HER2 receptor kinase signaling mediate epithelial cell invasion by Candida albicans during oropharyngeal infection

Weidong Zhu; Quynh T. Phan; Pinmanee Boontheung; Norma V. Solis; Joseph A. Loo; Scott G. Filler

The fungus Candida albicans is the major cause of oropharyngeal candidiasis (OPC). A key feature of this disease is fungal invasion of oral epithelial cells, a process that can occur by active penetration and fungal-induced endocytosis. Two invasins, Als3 and Ssa1, induce epithelial cell endocytosis of C. albicans, in part by binding to E-cadherin. However, inhibition of E-cadherin function only partially reduces C. albicans endocytosis, suggesting that there are additional epithelial cell receptors for this organism. Here, we show that the EGF receptor (EGFR) and HER2 function cooperatively to induce the endocytosis of C. albicans hyphae. EGFR and HER2 interact with C. albicans in an Als3- and Ssa1-dependent manner, and this interaction induces receptor autophosphorylation. Signaling through both EGFR and HER2 is required for maximal epithelial cell endocytosis of C. albicans in vitro. Importantly, oral infection with C. albicans stimulates the phosphorylation of EGFR and HER2 in the oral mucosa of mice, and treatment with a dual EGFR and HER2 kinase inhibitor significantly decreases this phosphorylation and reduces the severity of OPC. These results show the importance of EGFR and HER2 signaling in the pathogenesis of OPC and indicate the feasibility of treating candidal infections by targeting the host cell receptors with which the fungus interacts.


Eukaryotic Cell | 2011

Calcineurin Controls Drug Tolerance, Hyphal Growth, and Virulence in Candida dubliniensis

Ying-Lien Chen; Alexandra Brand; Emma Morrison; Fitz Gerald S. Silao; Ursela G. Bigol; Fedelino F. Malbas; Jeniel E. Nett; David R. Andes; Norma V. Solis; Scott G. Filler; Anna F. Averette; Joseph Heitman

ABSTRACT Candida dubliniensis is an emerging pathogenic yeast species closely related to Candida albicans and frequently found colonizing or infecting the oral cavities of HIV/AIDS patients. Drug resistance during C. dubliniensis infection is common and constitutes a significant therapeutic challenge. The calcineurin inhibitor FK506 exhibits synergistic fungicidal activity with azoles or echinocandins in the fungal pathogens C. albicans, Cryptococcus neoformans, and Aspergillus fumigatus. In this study, we show that calcineurin is required for cell wall integrity and wild-type tolerance of C. dubliniensis to azoles and echinocandins; hence, these drugs are candidates for combination therapy with calcineurin inhibitors. In contrast to C. albicans, in which the roles of calcineurin and Crz1 in hyphal growth are unclear, here we show that calcineurin and Crz1 play a clearly demonstrable role in hyphal growth in response to nutrient limitation in C. dubliniensis. We further demonstrate that thigmotropism is controlled by Crz1, but not calcineurin, in C. dubliniensis. Similar to C. albicans, C. dubliniensis calcineurin enhances survival in serum. C. dubliniensis calcineurin and crz1/crz1 mutants exhibit attenuated virulence in a murine systemic infection model, likely attributable to defects in cell wall integrity, hyphal growth, and serum survival. Furthermore, we show that C. dubliniensis calcineurin mutants are unable to establish murine ocular infection or form biofilms in a rat denture model. That calcineurin is required for drug tolerance and virulence makes fungus-specific calcineurin inhibitors attractive candidates for combination therapy with azoles or echinocandins against emerging C. dubliniensis infections.


Eukaryotic Cell | 2012

Divergent targets of Candida albicans biofilm regulator Bcr1 in vitro and in vivo.

Saranna Fanning; Wenjie Xu; Norma V. Solis; Carol A. Woolford; Scott G. Filler; Aaron P. Mitchell

ABSTRACT Candida albicans is a causative agent of oropharyngeal candidiasis (OPC), a biofilm-like infection of the oral mucosa. Biofilm formation depends upon the C. albicans transcription factor Bcr1, and previous studies indicate that Bcr1 is required for OPC in a mouse model of infection. Here we have used a nanoString gene expression measurement platform to elucidate the role of Bcr1 in OPC-related gene expression. We chose for assays a panel of 134 genes that represent a range of morphogenetic and cell cycle functions as well as environmental and stress response pathways. We assayed gene expression in whole infected tongue samples. The results sketch a portrait of C. albicans gene expression in which numerous stress response pathways are activated during OPC. This one set of experiments identifies 64 new genes with significantly altered RNA levels during OPC, thus increasing substantially the number of known genes in this expression class. The bcr1Δ/Δ mutant had a much more limited gene expression defect during OPC infection than previously reported for in vitro growth conditions. Among major functional Bcr1 targets, we observed that ALS3 was Bcr1 dependent in vivo while HWP1 was not. We used null mutants and complemented strains to verify that Bcr1 and Hwp1 are required for OPC infection in this model. The role of Als3 is transient and mild, though significant. Our findings suggest that the versatility of C. albicans as a pathogen may reflect its ability to persist in the face of multiple stresses and underscore that transcriptional circuitry during infection may be distinct from that detailed during in vitro growth.


PLOS Genetics | 2009

An RNA Transport System in Candida albicans Regulates Hyphal Morphology and Invasive Growth

Sarah L. Elson; Suzanne M. Noble; Norma V. Solis; Scott G. Filler; Alexander D. Johnson

Localization of specific mRNAs is an important mechanism through which cells achieve polarity and direct asymmetric growth. Based on a framework established in Saccharomyces cerevisiae, we describe a She3-dependent RNA transport system in Candida albicans, a fungal pathogen of humans that grows as both budding (yeast) and filamentous (hyphal and pseudohyphal) forms. We identify a set of 40 mRNAs that are selectively transported to the buds of yeast-form cells and to the tips of hyphae, and we show that many of the genes encoded by these mRNAs contribute to hyphal development, as does the transport system itself. Although the basic system of mRNA transport is conserved between S. cerevisiae and C. albicans, we find that the cargo mRNAs have diverged considerably, implying that specific mRNAs can easily move in and out of transport control over evolutionary timescales. The differences in mRNA cargos likely reflect the distinct selective pressures acting on the two species.


Antimicrobial Agents and Chemotherapy | 2011

Concentration of antifungal agents within host cell membranes: a new paradigm governing the efficacy of prophylaxis

Paolo Campoli; Q. Al Abdallah; R. Robitaille; Norma V. Solis; J. A. Fielhaber; A. S. Kristof; M. Laverdiere; Scott G. Filler; Donald C. Sheppard

ABSTRACT Posaconazole prophylaxis has proven highly effective in preventing invasive fungal infections, despite relatively low serum concentrations. However, high tissue levels of this agent have been reported in treated patients. We therefore hypothesized that the intracellular levels of antifungal agents are an important factor in determining the success of fungal prophylaxis. To examine the effect of host cell-associated antifungals on the growth of medically important molds, we exposed cells to antifungal agents and removed the extracellular drug prior to infection. Epithelial cells loaded with posaconazole and its parent molecule itraconazole, but not other antifungals, were able to inhibit fungal growth for at least 48 h and were protected from damage caused by infection. Cell-associated posaconazole levels were 40- to 50-fold higher than extracellular levels, and the drug was predominantly detected in cellular membranes. Fungistatic levels of posaconazole persisted within epithelial cells for up to 48 h. Therefore, the concentration of posaconazole in mammalian host cell membranes mediates its efficacy in prophylactic regimens and likely explains the observed discrepancy between serum antifungal levels and efficacy.


Eukaryotic Cell | 2009

Transcriptional Responses of Candida albicans to Epithelial and Endothelial Cells

Hyunsook Park; Yaoping Liu; Norma V. Solis; Joshua Spotkov; Jessica Hamaker; Jill R. Blankenship; Michael R. Yeaman; Aaron P. Mitchell; Haoping Liu; Scott G. Filler

ABSTRACT Candida albicans interacts with oral epithelial cells during oropharyngeal candidiasis and with vascular endothelial cells when it disseminates hematogenously. We set out to identify C. albicans genes that govern interactions with these host cells in vitro. The transcriptional response of C. albicans to the FaDu oral epithelial cell line and primary endothelial cells was determined by microarray analysis. Contact with epithelial cells caused a decrease in transcript levels of genes related to protein synthesis and adhesion, whereas contact with endothelial cells did not significantly influence any specific functional category of genes. Many genes whose transcripts were increased in response to either host cell had not been previously characterized. We constructed mutants with homozygous insertions in 22 of these uncharacterized genes to investigate their function during host-pathogen interaction. By this approach, we found that YCK2, VPS51, and UEC1 are required for C. albicans to cause normal damage to epithelial cells and resist antimicrobial peptides. YCK2 is also necessary for maintenance of cell polarity. VPS51 is necessary for normal vacuole formation, resistance to multiple stressors, and induction of maximal endothelial cell damage. UEC1 encodes a unique protein that is required for resistance to cell membrane stress. Therefore, some C. albicans genes whose transcripts are increased upon contact with epithelial or endothelial cells are required for the organism to damage these cells and withstand the stresses that it likely encounters during growth in the oropharynx and bloodstream.

Collaboration


Dive into the Norma V. Solis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron P. Mitchell

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Yaoping Liu

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Quynh T. Phan

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Wenjie Xu

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Hong Liu

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol A. Woolford

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Marc Swidergall

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge