Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Normadiah M. Kassim is active.

Publication


Featured researches published by Normadiah M. Kassim.


Toxicology Letters | 2003

Assessment of pubertal development in juvenile male rats after sub-acute exposure to bisphenol A and nonylphenol

Benjamin L.L. Tan; Normadiah M. Kassim; Mustafa Ali Mohd

The effects of bisphenol A and nonylphenol on pubertal development in the intact juvenile/peripubertal male Sprague-Dawley rats was observed in this study from PND23-52/53. Two groups of rats were administered orally with either 100 mg/kg body weight of nonylphenol or bisphenol A. Another group of rats were administered orally with a mixture of 100 mg/kg body weight of nonylphenol and bisphenol A. Control group was administered with the vehicle of Tween-80 with corn oil (1:9 v/v). Observations made in this study included growth, age at preputial separation, thyroid, liver, testis and kidney weight and histology, epididymal and seminal vesicle plus coagulation gland weight. Nonylphenol and bisphenol A have been observed to cause delay in puberty onset as well as testicular damage in the treatment groups when compared to the control; spermatogenesis was affected in most treated rats. Bisphenol A also caused the enlargement of the kidney and hydronephrosis. Administration of nonylphenol and bisphenol A as a mixture has caused less than additive effects.


Evidence-based Complementary and Alternative Medicine | 2013

Hepatoprotective Role of Ethanolic Extract of Vitex negundo in Thioacetamide-Induced Liver Fibrosis in Male Rats

Farkaad A. Kadir; Normadiah M. Kassim; Mahmood Ameen Abdulla; Wageeh A. Yehye

The hepatoprotective activity of ethanolic extract from the leaves of Vitex negundo (VN) was conducted against thioacetamide- (TAA-) induced hepatic injury in Sprague Dawley rats. The therapeutic effect of the extract was investigated on adult male rats. Rats were divided into seven groups: control, TAA, Silymarin (SY), and VN high dose and low dose groups. Rats were administered with VN extract at two different doses, 100 mg/kg and 300 mg/kg body weight. After 12 weeks, the rats administered with VN showed a significantly lower liver to body weight ratio. Their abnormal levels of biochemical parameters and liver malondialdehyde were restored closer to the normal levels and were comparable to the levels in animals treated with the standard drug, SY. Gross necropsy and histopathological examination further confirmed the results. Progression of liver fibrosis induced by TAA in rats was intervened by VN extract administration, and these effects were similar to those administered with SY. This is the first report on hepatoprotective effect of VN against TAA-induced liver fibrosis.


Clinics | 2013

Effects of the phytoestrogen genistein on the development of the reproductive system of Sprague Dawley rats.

Siti Rosmani Md Zin; Siti Zawiah Omar; Norhayati Liaqat Ali Khan; Nurul Iftitah Musameh; Srijit Das; Normadiah M. Kassim

OBJECTIVES: Genistein is known to influence reproductive system development through its binding affinity for estrogen receptors. The present study aimed to further explore the effect of Genistein on the development of the reproductive system of experimental rats. METHODS: Eighteen post-weaning female Sprague Dawley rats were divided into the following groups: (i) a control group that received vehicle (distilled water and Tween 80); (ii) a group treated with 10 mg/kg body weight (BW) of Genistein (Gen 10); and (iii) a group treated with a higher dose of Genistein (Gen 100). The rats were treated daily for three weeks from postnatal day 22 (P22) to P42. After the animals were sacrificed, blood samples were collected, and the uteri and ovaries were harvested and subjected to light microscopy and immunohistochemical study. RESULTS: A reduction of the mean weekly BW gain and organ weights (uteri and ovaries) were observed in the Gen 10 group compared to the control group; these findings were reversed in the Gen 100 group. Follicle stimulating hormone and estrogen levels were increased in the Gen 10 group and reduced in the Gen 100 group. Luteinizing hormone was reduced in both groups of Genistein-treated animals, and there was a significant difference between the Gen 10 and control groups (p<0.05). These findings were consistent with increased atretic follicular count, a decreased number of corpus luteum and down-regulation of estrogen receptors-α in the uterine tissues of the Genistein-treated animals compared to the control animals. CONCLUSION: Post-weaning exposure to Genistein could affect the development of the reproductive system of ovarian-intact experimental rats because of its action on the hypothalamic-pituitary-gonadal axis by regulating hormones and estrogen receptors.


The Scientific World Journal | 2014

PASS-Predicted Hepatoprotective Activity of Caesalpinia sappan in Thioacetamide-Induced Liver Fibrosis in Rats

Farkaad A. Kadir; Normadiah M. Kassim; Mahmood Ameen Abdulla; Behnam Kamalidehghan; Fatemeh Ahmadipour; Wageeh A. Yehye

The antifibrotic effects of traditional medicinal herb Caesalpinia sappan (CS) extract on liver fibrosis induced by thioacetamide (TAA) and the expression of transforming growth factor β1 (TGF-β1), α-smooth muscle actin (αSMA), and proliferating cell nuclear antigen (PCNA) in rats were studied. A computer-aided prediction of antioxidant and hepatoprotective activities was primarily performed with the Prediction Activity Spectra of the Substance (PASS) Program. Liver fibrosis was induced in male Sprague Dawley rats by TAA administration (0.03% w/v) in drinking water for a period of 12 weeks. Rats were divided into seven groups: control, TAA, Silymarin (SY), and CS 300 mg/kg body weight and 100 mg/kg groups. The effect of CS on liver fibrogenesis was determined by Massons trichrome staining, immunohistochemical analysis, and western blotting. In vivo determination of hepatic antioxidant activities, cytochrome P450 2E1 (CYP2E1), and matrix metalloproteinases (MPPS) was employed. CS treatment had significantly increased hepatic antioxidant enzymes activity in the TAA-treated rats. Liver fibrosis was greatly alleviated in rats when treated with CS extract. CS treatment was noted to normalize the expression of TGF-β1, αSMA, PCNA, MMPs, and TIMP1 proteins. PASS-predicted plant activity could efficiently guide in selecting a promising pharmaceutical lead with high accuracy and required antioxidant and hepatoprotective properties.


International Journal of Molecular Sciences | 2014

Genistein Induces Increase in Fluid pH, Na+ and HCO3- Concentration, SLC26A6 and SLC4A4 (NBCe1)-B Expression in the Uteri of Ovariectomized Rats

Asma Chinigarzadeh; Nor Fadila Kasim; Sekaran Muniandy; Normadiah M. Kassim; Naguib Salleh

Genistein has been reported to stimulate luminal HCO3− secretion. We hypothesized that genistein mediates this effect via SLC26A6 and SLC4A4 (NBCe1) transporters. Our study aimed to: investigate changes in uterine fluid pH, Na+ and HCO3− concentration and expression of uterine SLC26A6 and NBCe1 under genistein effect. Ovariectomized adult female rats received 25, 50 and 100 mg/kg/day genistein for a week with and without ICI 182780. A day after the last injection, in vivo uterine perfusion was performed to collect uterine fluid for Na+, HCO3− and pH determination. The animals were then sacrificed and uteri were removed for mRNA and protein expression analyses. SLC26A6 and NBCe1-A and NBCe1-B distribution were visualized by immunohistochemistry (IHC). Genistein at 50 and 100 mg/kg/day stimulates uterine fluid pH, Na+ and HCO3− concentration increase. Genistein at 100 mg/kg/day up-regulates the expression of SLC26A6 and SLC4A4 mRNA, which were reduced following concomitant ICI 182780 administration. In parallel, SLC26A6 and NBCe1-B protein expression were also increased following high dose genistein treatment and were localized mainly at the apical membrane of the luminal epithelia. SLC26A6 and NBCe1-B up-regulation by genistein could be responsible for the observed increase in the uterine fluid pH, Na+ and HCO3− concentration under this condition.


Biomedicine & Pharmacotherapy | 2016

Protective effect of aqueous seed extract of Vitis Vinifera against oxidative stress, inflammation and apoptosis in the pancreas of adult male rats with diabetes mellitus

Siti Hajar Adam; Nelli Giribabu; Normadiah M. Kassim; Kilari Eswar Kumar; Manuri Brahmayya; Aditya Arya; Naguib Salleh

INTRODUCTION Protective effects of Vitis Vinifera seed aqueous extract (VVSAE) against pancreatic dysfunctions and elevation of oxidative stress, inflammation and apoptosis in the pancreas in diabetes were investigated. Histopathological changes in the pancreas were examined under light microscope. METHODS Blood and pancreas were collected from adult male diabetic rats receiving 28days treatment with VVSAE orally. Fasting blood glucose (FBG), glycated hemoglobin (HbA1c), insulin and lipid profile levels and activity levels of anti-oxidative enzymes (superoxide dismutase-SOD, catalase-CAT and glutathione peroxidase-GPx) in the pancreas were determined by biochemical assays. Histopathological changes in the pancreas were examined under light microscopy and levels of insulin, glucose transporter (GLUT)-2, tumor necrosis factor (TNF)-α, Ikkβ and caspase-3 mRNA and protein were analyzed by real-time PCR (qPCR) and immunohistochemistry respectively. Radical scavenging activity of VVSAE was evaluated by in-vitro anti-oxidant assay while gas chromatography-mass spectrometry (GC-MS) was used to identify the major compounds in the extract. RESULTS GC-MS analyses indicated the presence of compounds that might exert anti-oxidative, anti-inflammatory and anti-apoptosis effects. Near normal FBG, HbAIc, lipid profile and serum insulin levels with lesser signs of pancreatic destruction were observed following administration of VVSAE to diabetic rats. Higher insulin, GLUT-2, SOD, CAT and GPx levels but lower TNF-α, Ikkβ and caspase-3 levels were also observed in the pancreas of VVSAE-treated diabetic rats (p<0.05 compared to non-treated diabetic rats). The extract possesses high in-vitro radical scavenging activities. CONCLUSION In conclusions, administration of VVSAE to diabetic rats could help to protect the pancreas against oxidative stress, inflammation and apoptosis-induced damage while preserving pancreatic function near normal in diabetes.


Evidence-based Complementary and Alternative Medicine | 2012

Chronic Administration of Oil Palm (Elaeis guineensis) Leaves Extract Attenuates Hyperglycaemic-Induced Oxidative Stress and Improves Renal Histopathology and Function in Experimental Diabetes

Varatharajan Rajavel; Munavvar A. Sattar; Mahmood Ameen Abdulla; Normadiah M. Kassim; Nor Azizan Abdullah

Oil palm (Elaeis guineensis) leaves extract (OPLE) has antioxidant properties and because oxidative stress contributes to the pathogenesis of diabetic nephropathy (DN), we tested the hypothesis that OPLE prevents diabetes renal oxidative stress, attenuating injury. Sprague-Dawley rats received OPLE (200 and 500 mg kg−1) for 4 and 12 weeks after diabetes induction (streptozotocin 60 mg kg−1). Blood glucose level, body and kidney weights, urine flow rate (UFR), glomerular filtration rate (GFR), and proteinuria were assessed. Oxidative stress variables such as 8-hydroxy-2′-deoxyguanosine (8-OHdG), glutathione (GSH), and lipid peroxides (LPO) were quantified. Renal morphology was analysed, and plasma transforming growth factor-beta1 (TGF-β1) was measured. Diabetic rats demonstrated increase in blood glucose and decreased body and increased kidney weights. Renal dysfunction (proteinuria, elevations in UFR and GFR) was observed in association with increases in LPO, 8-OHdG, and TGF-β1 and a decrease in GSH. Histological evaluation of diabetic kidney demonstrated glomerulosclerosis and tubulointerstitial fibrosis. OPLE attenuated renal dysfunction, improved oxidative stress markers, and reduced renal pathology in diabetic animals. These results suggest OPLE improves renal dysfunction and pathology in diabetes by reducing oxidative stress; furthermore, the protective effect of OPLE against renal damage in diabetes depends on the dose of OPLE as well as progression of DN.


The Journal of Steroid Biochemistry and Molecular Biology | 2014

Testosterone decreases fluid and chloride secretions in the uterus of adult female rats via down-regulating cystic fibrosis transmembrane regulator (CFTR) expression and functional activity.

Helmy Mohd Mokhtar; Nelli Giribabu; Normadiah M. Kassim; Sekaran Muniandy; Naguib Salleh

OBJECTIVES Estrogen is known to stimulate uterine fluid and Cl(-) secretion via CFTR. This study investigated testosterone effect on these changes in a rat model. METHODS Ovariectomized adult female rats received estrogen for five days or estrogen for three days followed by two days peanut oil or testosterone either alone or in the presence of flutamide or finasteride. At the end of treatment, uteri were perfused with perfusate containing CFTRinh-172. The rate of fluid and Cl(-) secretion were determined. Dose-dependent effect of testosterone and effect of forskolin on fluid secretion rate were measured. Animals were sacrificed and uteri were removed for CFTR protein and mRNA expression analyses, histology and cAMP measurement. Morphology of uterus, levels of expression of CFTR protein and mRNA and distribution of CFTR protein were observed. RESULTS Estrogen causes increase while testosterone causes decrease in uterine fluid and Cl(-) secretions. The effects of estrogen but not testosterone were antagonized by CFTRinh-172. Luminal fluid volume and apical expression of CFTR in the luminal epithelia were highest under estrogen and lowest under testosterone influences. Similar changes were observed in CFTR protein and mRNA expressions. Uterine cAMP level was highest under estrogen and lowest under testosterone influence. Forskolin increases fluid secretion rate in estrogen but not in testosterone-treated animals. Testosterone effects were dose-dependent and were antagonized by flutamide however, not finasteride. CONCLUSIONS Testosterone inhibition of estrogen-induced uterine fluid and Cl(-) secretion occurs via inhibition of CFTR expression and functional activities. These changes could explain the adverse effects of testosterone on fertility.


Canadian Journal of Diabetes | 2017

Anti-Inflammatory, Anti-Apoptotic and Pro-Proliferative Effects of Vitis Vinifera Seed Ethanolic Extract in the Liver of Streptozotocin-Nicotinamide-Induced Diabetes in Male Rats

Nelli Giribabu; Kamarulzaman Karim; Eswar Kumar Kilari; Normadiah M. Kassim; Naguib Salleh

OBJECTIVES Consumption of Vitis vinifera seed has been reported to ameliorate liver pathology in diabetes mellitus; however, the mechanisms underlying its effects remain unknown. In this study, the anti-inflammatory, anti-apoptotic and pro-proliferative effects of the ethanolic seed extract of V. vinifera (VVSEE) in the liver in cases of diabetes were identified. METHODS Adult male rats with streptozotocin-nicotinamide-induced diabetes were given 50, 100 or 200 mg/kg body weight VVSEE orally for 28 days. At the end of the treatment, body weights were determined, and the blood was collected for analyses of fasting blood glucose, insulin and liver enzyme levels. Following sacrifice, livers were harvested and their wet weights and glycogen contents were measured. Histologic appearances of the livers were observed under light microscopy, and the expression and distribution of inflammatory, apoptosis and proliferative markers in the livers were identified by molecular biologic techniques. RESULTS Treatment of rats with diabetes by VVSEE attenuates decreased body weight, liver weight and liver glycogen content. Additionally, increases in fasting blood glucose levels and liver enzyme levels and decreases in serum insulin levels were ameliorated. Lesser histopathologic changes were also observed: decreased inflammation and apoptosis, as indicated by decreased levels of inflammatory markers (TNF-α, NF-Kβ, IKK-β, IL-6, IL-1β) and apoptosis markers (caspase-3, caspase-9 and Bax). VVSEE treatment induces increase in hepatocyte regeneration, as indicated by increased PCNA and Ki-67 distribution in the livers of rats with diabetes. Several molecules identified in VVSEE via gas chromatography mass spectrometry might contribute to these effects. CONCLUSIONS The anti-inflammatory, anti-apoptotic and pro-proliferative effects of VVSEE could account for its hepatoprotective actions in diabetes.


Reproductive Toxicology | 2017

Quercetin alters uterine fluid volume and aquaporin (AQP) subunits (AQP-1, 2, 5 & 7) expression in the uterus in the presence of sex-steroids in rats

Huma Shahzad; Nelli Giribabu; Kamarulzaman Karim; Sekaran Muniandy; Normadiah M. Kassim; Naguib Salleh

Effects of quercetin on uterine fluid volume and aquaporin (AQP) expression in the uterus were investigated. Estradiol (E) or estradiol followed by progesterone (E+P) were given to ovariectomised rats with or without quercetin (10, 50 or 100mg/kg/day) treatment. Uteri were harvested and its inner/outer circumference ratio was determined. AQP-1, 2, 5 and 7 mRNA and protein levels in uterus were quantified by Real-time PCR and Western blotting respectively. Protein distribution was observed by immunohistochemistry. Administration of quercetin in E-treated rats decreased the uterine fluid volume and uterine AQP-2 expression. In E+P-treated rats, administration of 100mg/kg/day quercetin increased uterine fluid volume, AQP-1 and 2 expression but decreased AQP-7 expression in uterus. AQP-1 was distributed in stromal blood vessels while AQP-2, 5 and 7 were distributed in uterine epithelium. CONCLUSIONS Quercetin-induced changes in uterine fluid volume and AQP subunits expression in uterus could affect the uterine reproductive functions under different sex-steroid influence.

Collaboration


Dive into the Normadiah M. Kassim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge