Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norman C. Waters is active.

Publication


Featured researches published by Norman C. Waters.


Antimicrobial Agents and Chemotherapy | 2007

Assessment and Continued Validation of the Malaria SYBR Green I-Based Fluorescence Assay for Use in Malaria Drug Screening

Jacob D. Johnson; Richard A. Dennull; Lucia Gerena; Miriam Lopez-Sanchez; Norma Roncal; Norman C. Waters

ABSTRACT Several new fluorescence malaria in vitro drug susceptibility microtiter plate assays that detect the presence of malarial DNA in infected erythrocytes have recently been reported, in contrast to traditional isotopic screens that involve radioactive substrate incorporation to measure in vitro malaria growth inhibition. We have assessed and further characterized the malaria SYBR Green I-based fluorescence (MSF) assay for its ability to monitor drug resistance. In order to use the MSF assay as a drug screen, all assay conditions must be thoroughly examined. In this study we expanded upon the capabilities of this assay by including antibiotics and antifolates in the drug panel and testing folic acid-free growth conditions. To do this, we evaluated a more expansive panel of antimalarials in combination with various drug assay culture conditions commonly used in drug sensitivity screening for their activity against Plasmodium falciparum strains D6 and W2. The detection and quantitation limits of the MSF assay were 0.04 to 0.08% and ∼0.5% parasitemia, respectively. The MSF assay quality was significantly robust, displaying a Z′ range of 0.73 to 0.95. The 50% inhibitory concentrations for each drug and culture condition combination were determined by using the MSF assay. Compared to the standard [3H]hypoxanthine assay, the MSF assay displayed the expected parasite drug resistance patterns with a high degree of global and phenotypic correlation (r2 ≥ 0.9238), regardless of which culture condition combination was used. In conclusion, the MSF assay allows for reliable one-plate high-throughput, automated malaria in vitro susceptibility testing without the expense, time consumption, and hazard of other screening assays.


Trends in Parasitology | 2008

Protein kinases of malaria parasites: an update

Christian Doerig; Oliver Billker; Timothy A. J. Haystead; Pushkar Sharma; Andrew B. Tobin; Norman C. Waters

Protein kinases (PKs) play crucial roles in the control of proliferation and differentiation in eukaryotic cells. Research on protein phosphorylation has expanded tremendously in the past few years, in part as a consequence of the realization that PKs represent attractive drug targets in a variety of diseases. Activity in Plasmodium PK research has followed this trend, and several reports on various aspects of this subject were delivered at the Molecular Approaches to Malaria 2008 meeting (MAM2008), a sharp increase from the previous meeting. Here, the authors of most of these communications join to propose an integrated update of the development of the rapidly expanding field of Plasmodium kinomics.


Bioorganic & Medicinal Chemistry Letters | 2001

Design and synthesis of Pfmrk inhibitors as potential antimalarial agents

Zili Xiao; Norman C. Waters; Cassandra L. Woodard; Zhiyu Li; Pui-Kai Li

The synthesis and inhibitory activities of 10 potential inhibitors of Pfmrk, a Plasmodium falciparum cyclin-dependent protein kinase, are described. The most potent inhibitor is a 3-phenyl-quinolinone compound with an IC(50) value of 18 microM. It is the first compound reported to inhibit Pfmrk at the micro molar range.


PLOS ONE | 2013

The Role of Pfmdr1 and Pfcrt in Changing Chloroquine, Amodiaquine, Mefloquine and Lumefantrine Susceptibility in Western-Kenya P. falciparum Samples during 2008–2011

Fredrick Eyase; Hoseah M. Akala; Luiser A. Ingasia; Agnes C. Cheruiyot; Angela A. Omondi; Charles Okudo; Dennis W. Juma; Redemptah Yeda; Ben Andagalu; Elizabeth Wanja; Edwin Kamau; David Schnabel; Norman C. Waters; Douglas S. Walsh; Jacob D. Johnson

Single Nucleotide Polymorphisms (SNPs) in the Pfmdr1, and Pfcrt, genes of Plasmodium falciparum may confer resistance to a number of anti-malaria drugs. Pfmdr1 86Y and haplotypes at Pfcrt 72-76 have been linked to chloroquine (CQ) as well as amodiaquine (AQ) resistance. mefloquine (MQ) and lumefantrine (LU) sensitivities are linked to Pfmdr1 86Y. Additionally, Pfcrt K76 allele carrying parasites have shown tolerance to LU. We investigated the association between Pfmdr1 86/Pfcrt 72-76 and P. falciparum resistance to CQ, AQ, MQ and LU using field samples collected during 2008–2011 from malaria endemic sites in western Kenya. Genomic DNA from these samples was genotyped to examine SNPs and haplotypes in Pfmdr1 and Pfcrt respectively. Additionally, immediate ex vivo and in vitro drug sensitivity profiles were assessed using the malaria SYBR Green I fluorescence-based assay. We observed a rapid but steady percent increase in wild-type parasites with regard to both Pfmdr1 and Pfcrt between 2008 and 2011 (p<0.0001). Equally, a significant reciprocate decrease in AQ and CQ median IC50 values occurred (p<0.0001) during the same period. Thus, the data in this study point to a significantly rapid change in parasite response to AQ and CQ in the study period. This may be due to releasing of drug pressure on the parasite from reduced use of AQ in the face of increased Artemisinin (ART) Combination Therapy (ACT) administration following the intervention of the Global Fund in 2008. LU has been shown to select for 76K genotypes, thus the observed increase in 76K genotypes coupled with significant cross resistance between LU and MQ, may herald emergence of tolerance against both drugs in future.


Combinatorial Chemistry & High Throughput Screening | 2005

Fatty Acid Synthesis as a Target for Antimalarial Drug Discovery

Jeff Zhiqiang Lu; Patricia J. Lee; Norman C. Waters; Sean T. Prigge

In biological systems, fatty acids can be synthesized by two related, but distinct de novo fatty acid synthase (FAS) pathways. Human cells rely on a type I FAS whereas plants, bacteria and other microorganisms contain type II FAS pathways. This difference exposes the type II FAS enzymes as potential targets for anti-microbial drugs that have little to no side effects in the human host. A number of inhibitors of type II FAS enzymes have been discovered - many of which have anti-bacterial activity. Extensive biochemical and structural studies have shed light on how these compounds inhibit their target enzymes, laying the foundation for the design of inhibitors with increased potency. Recent work has shown that malaria parasites do not contain a type I FAS and rely solely on a type II FAS for the de novo biosynthesis of fatty acids. The malaria FAS enzymes are therefore an exciting source of new drug targets, and are being actively exploited by several drug discovery efforts. Rapid progress has been made, largely due to the vast body of mechanistic and structural information about type II FAS enzymes from bacteria and the availability of inhibitors. Ongoing antimalarial drug discovery projects will be described in this review as well as background information about the well-studied bacterial type II FAS enzymes.


BMC Public Health | 2011

Malaria and other vector-borne infection surveillance in the U.S. Department of Defense Armed Forces Health Surveillance Center-Global Emerging Infections Surveillance program: review of 2009 accomplishments

Mark M Fukuda; Terry A. Klein; Tadeusz J. Kochel; Talia M. Quandelacy; Bryan L. Smith; Jeff Villinski; Delia Bethell; Stuart D. Tyner; Youry Se; Chanthap Lon; David Saunders; Jacob D. Johnson; Eric Wagar; Douglas S. Walsh; Matthew R. Kasper; Jose L. Sanchez; Clara J. Witt; Qin Cheng; Norman C. Waters; Sanjaya K. Shrestha; Julie A. Pavlin; Andres G. Lescano; Paul C. F. Graf; Jason H. Richardson; Salomon Durand; William O. Rogers; David L. Blazes; Kevin L. Russell

Vector-borne infections (VBI) are defined as infectious diseases transmitted by the bite or mechanical transfer of arthropod vectors. They constitute a significant proportion of the global infectious disease burden. United States (U.S.) Department of Defense (DoD) personnel are especially vulnerable to VBIs due to occupational contact with arthropod vectors, immunological naiveté to previously unencountered pathogens, and limited diagnostic and treatment options available in the austere and unstable environments sometimes associated with military operations. In addition to the risk uniquely encountered by military populations, other factors have driven the worldwide emergence of VBIs. Unprecedented levels of global travel, tourism and trade, and blurred lines of demarcation between zoonotic VBI reservoirs and human populations increase vector exposure. Urban growth in previously undeveloped regions and perturbations in global weather patterns also contribute to the rise of VBIs. The Armed Forces Health Surveillance Center-Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) and its partners at DoD overseas laboratories form a network to better characterize the nature, emergence and growth of VBIs globally. In 2009 the network tested 19,730 specimens from 25 sites for Plasmodium species and malaria drug resistance phenotypes and nearly another 10,000 samples to determine the etiologies of non-Plasmodium species VBIs from regions spanning from Oceania to Africa, South America, and northeast, south and Southeast Asia. This review describes recent VBI-related epidemiological studies conducted by AFHSC-GEIS partner laboratories within the OCONUS DoD laboratory network emphasizing their impact on human populations.


Bioorganic & Medicinal Chemistry Letters | 2009

Selective inhibition of Pfmrk, a Plasmodium falciparum CDK, by antimalarial 1,3-diaryl-2-propenones

Jeanne A. Geyer; Susan M. Keenan; Cassandra L. Woodard; Philip A. Thompson; Lucia Gerena; Daniel A. Nichols; Clare E. Gutteridge; Norman C. Waters

The cyclin dependent protein kinases, Pfmrk and PfPK5, most likely play an essential role in cell cycle control and differentiation in Plasmodium falciparum and are thus an attractive target for antimalarial drug development. Various 1,3-diaryl-2-propenones (chalcone derivatives) which selectivity inhibit Pfmrk in the low micromolar range (over PfPK5) are identified. Molecular modeling shows a pair of amino acid residues within the Pfmrk active site which appear to confer this selectivity. Predicted interactions between the chalcones and Pfmrk correlate well with observed potency. Pfmrk inhibition and activity against the parasite in vitro correlate weakly. Several mechanisms of action have been suggested for chalcone derivatives and our study suggests that kinase inhibition may be an additional mechanism of antimalarial activity for this class of compounds.


Malaria Journal | 2010

Increased prevalence of the pfdhfr/phdhps quintuple mutant and rapid emergence of pfdhps resistance mutations at codons 581 and 613 in Kisumu, Kenya

Maroya D. Spalding; Fredrick Eyase; Hoseah M Akala; Sheryl A. Bedno; Sean T. Prigge; Rodney L. Coldren; William J. Moss; Norman C. Waters

BackgroundAnti-malarial drug resistance in Kenya prompted two drug policy changes within a decade: sulphadoxine-pyrimethamine (SP) replaced chloroquine (CQ) as the first-line anti-malarial in 1998 and artemether-lumefantrine (AL) replaced SP in 2004. Two cross-sectional studies were conducted to monitor changes in the prevalence of molecular markers of drug resistance over the period in which SP was used as the first-line anti-malarial. The baseline study was carried out from 1999-2000, shortly after implementation of SP, and the follow-up study occurred from 2003-2005, during the transition to AL.Materials and methodsBlood was collected from malaria smear-positive, symptomatic patients presenting to outpatient centers in Kisumu, Kenya, during the baseline and follow-up studies. Isolates were genotyped at codons associated with SP and CQ resistance. In vitro IC50 values for antifolates and quinolones were determined for isolates from the follow-up study.ResultsThe prevalence of isolates containing the pfdhfr N51I/C59R/S108N/pfdhps A437G/K540E quintuple mutant associated with SP-resistance rose from 21% in the baseline study to 53% in the follow-up study (p < 0.001). Isolates containing the pfdhfr I164L mutation were absent from both studies. The pfdhps mutations A581G and A613S/T were absent from the baseline study but were present in 85% and 61%, respectively, of isolates from the follow-up study. At follow-up, parasites with mutations at five pfdhps codons, 436, 437, 540, 581, and 613, accounted for 39% of isolates. The CQ resistance-associated mutations pfcrt K76T and pfmdr1 N86Y rose from 82% to 97% (p = 0.001) and 44% to 76% (p < 0.001), respectively, from baseline to follow-up.ConclusionsDuring the period in which SP was the first-line anti-malarial in Kenya, highly SP-resistant parasites emerged, including isolates harboring pfdhps mutations not previously observed there. SP continues to be widely used in Kenya; however, given the highly resistant genotypes observed in this study, its use as a first-line anti-malarial should be discouraged, particularly for populations without acquired immunity to malaria. The increase in the pfcrt K76T prevalence, despite efforts to reduce CQ use, suggests that either these efforts are not adequate to alleviate CQ pressure in Kisumu, or that drug pressure is derived from another source, such as the second-line anti-malarial amodiaquine.


The Journal of Infectious Diseases | 2016

Fractional Third and Fourth Dose of RTS,S/AS01 Malaria Candidate Vaccine: A Phase 2a Controlled Human Malaria Parasite Infection and Immunogenicity Study

Jason A. Regules; Susan Cicatelli; Jason W. Bennett; Kristopher M. Paolino; Patrick S. Twomey; James E. Moon; April K. Kathcart; Kevin Hauns; Jack Komisar; Aziz N. Qabar; Silas A. Davidson; Sheetij Dutta; Matthew E. Griffith; Charles Magee; Mariusz Wojnarski; Jeffrey R. Livezey; Adrian T. Kress; Paige E. Waterman; Erik Jongert; Ulrike Wille-Reece; Wayne Volkmuth; Daniel Emerling; William H. Robinson; Marc Lievens; Danielle Morelle; Cynthia K. Lee; Bebi Yassin-Rajkumar; Richard Weltzin; Joe Cohen; Robert Paris

BACKGROUND Three full doses of RTS,S/AS01 malaria vaccine provides partial protection against controlled human malaria parasite infection (CHMI) and natural exposure. Immunization regimens, including a delayed fractional third dose, were assessed for potential increased protection against malaria and immunologic responses. METHODS In a phase 2a, controlled, open-label, study of healthy malaria-naive adults, 16 subjects vaccinated with a 0-, 1-, and 2-month full-dose regimen (012M) and 30 subjects who received a 0-, 1-, and 7-month regimen, including a fractional third dose (Fx017M), underwent CHMI 3 weeks after the last dose. Plasmablast heavy and light chain immunoglobulin messenger RNA sequencing and antibody avidity were evaluated. Protection against repeat CHMI was evaluated after 8 months. RESULTS A total of 26 of 30 subjects in the Fx017M group (vaccine efficacy [VE], 86.7% [95% confidence interval [CI], 66.8%-94.6%]; P < .0001) and 10 of 16 in the 012M group (VE, 62.5% [95% CI, 29.4%-80.1%]; P = .0009) were protected against infection, and protection differed between schedules (P = .040, by the log rank test). The fractional dose boosting increased antibody somatic hypermutation and avidity and sustained high protection upon rechallenge. DISCUSSIONS A delayed third fractional vaccine dose improved immunogenicity and protection against infection. Optimization of the RTS,S/AS01 immunization regimen may lead to improved approaches against malaria. CLINICAL TRIALS REGISTRATION NCT01857869.


American Journal of Tropical Medicine and Hygiene | 2011

Antimalarial Drug Sensitivity Profile of Western Kenya Plasmodium falciparum Field Isolates Determined by a SYBR Green I in vitro Assay and Molecular Analysis

Hoseah M. Akala; Fredrick Eyase; Agnes C. Cheruiyot; Angela A. Omondi; Bernhards Ogutu; Norman C. Waters; Jacob D. Johnson; Mark E. Polhemus; David Schnabel; Douglas S. Walsh

In vitro drug sensitivity and molecular analyses of Plasmodium falciparum track drug resistance. DNA-binding fluorescent dyes like SYBR Green I may allow field laboratories, proximal to P. falciparum collection sites, to conduct drug assays. In 2007-2008, we assayed 121 P. falciparum field isolates from western Kenya for 50% inhibitory concentrations (IC(50)) against 6 antimalarial drugs using a SYBR Green I in vitro assay: 91 immediate ex vivo (IEV) and 30 culture-adapted, along with P. falciparum reference clones D6 (chloroquine [CQ] sensitive) and W2 (CQ resistant). We also assessed P. falciparum mdr1 (Pfmdr1) copy number and single nucleotide polymorphisms (SNPs) at four codons. The IC(50)s for IEV and culture-adapted P. falciparum isolates were similar, and approximated historical IC(50)s. For Pfmdr1, mean copy number was 1, with SNPs common at codons 86 and 184. The SYBR Green I assay adapted well to our field-based laboratory, for both IEV and culture-adapted P. falciparum, warranting continued use.

Collaboration


Dive into the Norman C. Waters's collaboration.

Top Co-Authors

Avatar

Qin Cheng

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeanne A. Geyer

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Karryn J. Gresty

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sean T. Prigge

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cassandra L. Woodard

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Sheetij Dutta

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge