Norman E. Williams
University of Iowa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Norman E. Williams.
Experimental Cell Research | 1979
Norman E. Williams; Pierre E. Vaudaux; Lars Skriver
Abstract Isolated pellicles (cell ‘ghosts’) have been prepared from Tetrahymena thermophila strain B by two different methods. Using differential solubilization in combination with polyacrylamide gel electrophoresis and electron microscopy, we have tentatively identified the major proteins found in the surface-associated cytoskeleton. The ‘epiplasm’, a continuous layer of fibrous material found just beneath the surface membranes, appears to contain two major proteins. The smaller of the two (mol. wt 122 000 D) is believed to be present throughout the layer, whereas the larger protein (mol. wt 145 000 D) appears to be localized in the regions where ciliary basal bodies connect to the epiplasmic layer and to surface membranes. Evidence is presented which suggests that actin may also be present in this structure. Tubulin has been isolated from the cytosol of Tetrahymena and compared with cytoskeletal tubulin and porcine brain tubulin. A major protein of mol. wt 250 000 D which is found in Tetrahymena pellicles appears to be the major component of kinetodesmal fibers (striated elements which attach to the ciliary basal bodies).
Journal of Eukaryotic Microbiology | 1995
Norman E. Williams; Jerry E. Honts; Virginia M. Dress; E. Marlo Nelsen; Joseph Frankel
ABSTRACT. Twelve monoclonal antibodies were raised that are specific for the membrane skeleton of Tetrahymena. Five were directed against T. pyrifomis and seven were directed against T. thermophila. Some cross‐reactivity between species was found. Each monoclonal antibody recognized one of the three major components of epiplasm, i.e. the bands A, B, and C identified in electrophoretic separations of epiplasmic proteins. It was found, using these antibodies, that the epiplasmic proteins A, B, and C have overlapping but independent distributions within the cell.
Journal of Eukaryotic Microbiology | 1994
E. Marlo Nelsen; Norman E. Williams; Hong Yi; Jennifer Knaak; Joseph Frankel
ABSTRACT Certain monoclonal antibodies interact with proteins of Tetrahymena thermophila found in the conjugation junction as well as around the gametic nuclei (pronuclei) of conjugating cells; they also react with the oral primordium and fission zone of vegetative cells and with the cytoproct and contractile vacuole pores of all cells. One of these (FXIX‐3A7) was investigated in detail. Immunogold labelling suggests that the material labelled by the 3A7 monoclonal antibody, which we call “fenestrin,” is located beneath the epiplasm (membrane skeleton). Immunoblots reveal that the major and perhaps sole antigen is a 64 kDa polypeptide, found in two isoelectric variants. Developmental studies implicate fenestrin in two processes involved in conjugation. The first is “tip transformation.” During preliminary starvation (“initiation”), labelling of fenestrin first appeared as a spot at the anterior end of starved mature cells, then after mixing of different mating types (“costimulation”) it extended posteriorly along the anterior suture. After pairing, this region spread to form a widened plate. The second process is pronuclear transfer. Fenestrations representing channels between the conjugating cells began to appear 0.5 to 1 h after the conjugants united, and eventually merged to form a small number of temporary large holes during exchange of the transfer pronuclei. A fenestrin envelope also enclosed both the transfer and resident pronuclei; a strand of fenestrin connected the two. Shortly after pronuclear transfer, both transfer and resident pronuclei were released from fenestrin caps and fused to produce a zygotic nucleus (synkaryon) not associated with fenestrin. Fenestrin thus appears to be intimately involved in the process of pronuclear exchange.
Eukaryotic Cell | 2006
Norman E. Williams; Che-Chia Tsao; Josephine Bowen; Gery L. Hehman; Ruth J. Williams; Joseph Frankel
ABSTRACT A previously identified Tetrahymena thermophila actin gene (C. G. Cupples and R. E. Pearlman, Proc. Natl. Acad. Sci. USA 83:5160-5164, 1986), here called ACT1, was disrupted by insertion of a neo3 cassette. Cells in which all expressed copies of this gene were disrupted exhibited intermittent and extremely slow motility and severely curtailed phagocytic uptake. Transformation of these cells with inducible genetic constructs that contained a normal ACT1 gene restored motility. Use of an epitope-tagged construct permitted visualization of Act1p in the isolated axonemes of these rescued cells. In ACT1Δ mutant cells, ultrastructural abnormalities of outer doublet microtubules were present in some of the axonemes. Nonetheless, these cells were still able to assemble cilia after deciliation. The nearly paralyzed ACT1Δ cells completed cleavage furrowing normally, but the presumptive daughter cells often failed to separate from one another and later became reintegrated. Clonal analysis revealed that the cell cycle length of the ACT1Δ cells was approximately double that of wild-type controls. Clones could nonetheless be maintained for up to 15 successive fissions, suggesting that the ACT1 gene is not essential for cell viability or growth. Examination of the cell cortex with monoclonal antibodies revealed that whereas elongation of ciliary rows and formation of oral structures were normal, the ciliary rows of reintegrated daughter cells became laterally displaced and sometimes rejoined indiscriminately across the former division furrow. We conclude that Act1p is required in Tetrahymena thermophila primarily for normal ciliary motility and for phagocytosis and secondarily for the final separation of daughter cells.
Methods in Cell Biology | 1999
Norman E. Williams
Publisher Summary Immunoprecipitation is a procedure useful in the determination of many of the properties of proteins for which specific antibodies are available. These include the presence and quantity of a protein in a cell, the molecular weight, the rate of synthesis or degradation, posttranslational modification, and the association of proteins in native hetero-oligomers. Immunoprecipitation consists of several steps: (1) preparing the cells, (2) labeling the antigen, (3) lysis of the cells, (4) preabsorption of the lysate, (5) formation of the antigen-antibody complex, (6) precipitation of the primary antibody with protein A attached to a matrix, (7) washing the immunoprecipitate, and (8) electrophoresis of the immune complex. Metabolic labeling with [ 35 S] methionine is the most commonly used method for labeling antigens in studies involving immunoprecipitation. The 35 S signal is easy to detect, and the intracellular pool of methionine is small. Labels that detect post-translational modifications can also be used.
Experimental Cell Research | 1986
Norman E. Williams; Jerry E. Honts; Ron W. Graeff
Two proteins from the Triton X-100-insoluble fraction of Tetrahymena pyriformis have been isolated and shown by immunological methods to be major components of a pervasive system of filaments localized within the oral apparatus. These proteins, OF-1 and OF-2, have apparent molecular weights (MWapp) in polyacrylamide gels of 87,000 and 80,000 D, respectively. Peptide maps obtained and the absence of immunological cross-reactivity suggest that these proteins are not closely related to each other. Indirect immunofluorescence studies on dividing cells have shown that the oral filament system forms late in the cell cycle. The filaments appeared first after the basal bodies in the oral primordium had organized into groups and the fission furrow had begun to form. Dedifferentiation of the oral filament system in the anterior (old) oral apparatus was also observed at this point in the cell cycle. Following this, the oral filament systems in both old and new oral apparatuses completed development synchronously. Proteins showing antigenic similarity to OF-1 were found in a number of other cell types. Tests with heterologous antisera failed to demonstrate a relationship between vertebrate cytoskeletal proteins and the oral filament proteins of Tetrahymena.
Journal of Eukaryotic Microbiology | 2004
Norman E. Williams
Abstract The cortical protein Epc1p is the most abundant protein in the membrane skeleton, or epiplasm, of Tetrahymena thermophila. A partial sequence of the EPC1 gene was obtained and used to obtain a knockout construct that was successful in transforming Tetrahymena thermophila cells. The results support the conclusion that Epc1p influences cell shape and the fidelity of cortical development. It was further observed that this protein is transferred from plus to minus cells during conjugation, and that the imported protein is assembled into the epiplasm of the recipient cell in a discreet series of steps.
Journal of Structural Biology | 1992
Virginia M. Dress; Hong Yi; Michael R. Musal; Norman E. Williams
There is a complex system of 2- to 5-nm filaments in the oral apparatus of Tetrahymena. Four major subunit proteins, called tetrins, have been isolated from the filaments. These proteins, showing apparent molecular weights in polyacrylamide gels of 79-89 kDa, will assemble in vitro into 2- to 5-nm filaments. Tetrin filaments in vivo show different packing arrangements in different regions of the oral apparatus. We sought to determine the distributions of tetrin polypeptides within the complex oral structure by obtaining monoclonal antibodies specific for individual tetrins, then mapping their distributions within the oral apparatus using standard fluorescence microscopy, confocal laser scanning fluorescence microscopy, and electron microscopy. The results indicate that the four tetrin polypeptides are colocalized everywhere within the oral apparatus of Tetrahymena. Tetrin-binding proteins or specific nucleating structures may need to be invoked to explain the complex organization of the tetrin network. The 16 monoclonal antibodies obtained were also used to search for evidence of immunological relationships between tetrin and cytoskeletal proteins in multicellular organisms. None was found.
Experimental Cell Research | 1979
Pierre E. Vaudaux; Norman E. Williams
Abstract The turnover of surface membrane-associated cytoskeletal proteins has been studied in Tetrahymena. These proteins undergo rapid turnover and appear to be in equilibrium with precursor pools within the cytosol. Carefully controlled pulse-chase experiments, alone and in combination with cycloheximide, have shown that labeled proteins accumulated in the cytoskeleton after they were no longer being synthesized within the cell. The movement of subunits from the cytoskeleton to the cytosol was also demonstrated using tubulin isolated from these two compartments within the cell.
Journal of Eukaryotic Microbiology | 2003
Jerry E. Honts; Norman E. Williams
Abstract An important unsolved problem lies in the mechanisms that determine overall size, shape, and the localization of subcellular structures in eukaryotic cells. The membrane skeleton must play a central role in these processes in many cell types, and the ciliate membrane skeleton, or epiplasm, offers favorable opportunities for exploring the molecular determinants of cortical organization. Among the ciliates, Tetrahymena is well suited for the application of a wide range of molecular and cellular approaches. Progress has been made in the identification and sequencing of genes and proteins that encode epiplasmic and cortical proteins. The amino acid sequences of these proteins suggest that they define new classes of cytoskeletal proteins, distinct from the articulin and epiplasmin proteins. We will also discuss recent in vivo and in vitro studies of the regulation of assembly of these cortical proteins. This will include information regarding the down-regulation of epiplasmic proteins during cleavage, their topographic regulation in the cell cycle, and the results of in vitro assembly and binding studies of the epiplasmic C protein.