Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norman P. Gerry is active.

Publication


Featured researches published by Norman P. Gerry.


Nature Medicine | 2007

Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer

Avrum Spira; Jennifer Beane; Vishal Shah; Katrina Steiling; Gang Liu; Frank Schembri; Sean Gilman; Yves-Martine Dumas; Paul Calner; Paola Sebastiani; Sriram Sridhar; John F. Beamis; Carla Lamb; Timothy Anderson; Norman P. Gerry; Joseph Keane; Marc E. Lenburg; Jerome S. Brody

Lung cancer is the leading cause of death from cancer in the US and the world. The high mortality rate (80–85% within 5 years) results, in part, from a lack of effective tools to diagnose the disease at an early stage. Given that cigarette smoke creates a field of injury throughout the airway, we sought to determine if gene expression in histologically normal large-airway epithelial cells obtained at bronchoscopy from smokers with suspicion of lung cancer could be used as a lung cancer biomarker. Using a training set (n = 77) and gene-expression profiles from Affymetrix HG-U133A microarrays, we identified an 80-gene biomarker that distinguishes smokers with and without lung cancer. We tested the biomarker on an independent test set (n = 52), with an accuracy of 83% (80% sensitive, 84% specific), and on an additional validation set independently obtained from five medical centers (n = 35). Our biomarker had ∼90% sensitivity for stage 1 cancer across all subjects. Combining cytopathology of lower airway cells obtained at bronchoscopy with the biomarker yielded 95% sensitivity and a 95% negative predictive value. These findings indicate that gene expression in cytologically normal large-airway epithelial cells can serve as a lung cancer biomarker, potentially owing to a cancer-specific airway-wide response to cigarette smoke.


PLOS Genetics | 2009

A Genome-Wide Association Study of Hypertension and Blood Pressure in African Americans

Adebowale Adeyemo; Norman P. Gerry; Guanjie Chen; Alan Herbert; Ayo Doumatey; Hanxia Huang; Jie Zhou; Kerrie Lashley; Yuanxiu Chen; Michael F. Christman; Charles N. Rotimi

The evidence for the existence of genetic susceptibility variants for the common form of hypertension (“essential hypertension”) remains weak and inconsistent. We sought genetic variants underlying blood pressure (BP) by conducting a genome-wide association study (GWAS) among African Americans, a population group in the United States that is disproportionately affected by hypertension and associated complications, including stroke and kidney diseases. Using a dense panel of over 800,000 SNPs in a discovery sample of 1,017 African Americans from the Washington, D.C., metropolitan region, we identified multiple SNPs reaching genome-wide significance for systolic BP in or near the genes: PMS1, SLC24A4, YWHA7, IPO7, and CACANA1H. Two of these genes, SLC24A4 (a sodium/potassium/calcium exchanger) and CACNA1H (a voltage-dependent calcium channel), are potential candidate genes for BP regulation and the latter is a drug target for a class of calcium channel blockers. No variant reached genome wide significance for association with diastolic BP (top scoring SNP rs1867226, p = 5.8×10−7) or with hypertension as a binary trait (top scoring SNP rs9791170, p = 5.1×10−7). We replicated some of the significant SNPs in a sample of West Africans. Pathway analysis revealed that genes harboring top-scoring variants cluster in pathways and networks of biologic relevance to hypertension and BP regulation. This is the first GWAS for hypertension and BP in an African American population. The findings suggests that, in addition to or in lieu of relying solely on replicated variants of moderate-to-large effect reaching genome-wide significance, pathway and network approaches may be useful in identifying and prioritizing candidate genes/loci for further experiments.


Nature Biotechnology | 2000

Universal DNA array detection of small insertions and deletions in BRCA1 and BRCA2

Reyna Favis; Joseph P. Day; Norman P. Gerry; Catherine Phelan; Steven A. Narod; Francis Barany

Array-based mutation detection methodology typically relies on direct hybridization of the fluorescently labeled query sequence to surface-bound oligonucleotide probes. These probes contain either small sequence variations or perfect-match sequence. The intensity of fluorescence bound to each oligonucleotide probe is intended to reveal which sequence is perfectly complementary to the query sequence. However, these approaches have not always been successful, especially for detection of small frameshift mutations. Here we describe a multiplex assay to detect small insertions and deletions by using a modified PCR to evenly amplify each amplicon (PCR/PCR), followed by ligase detection reaction (LDR). Mutations were identified by screening reaction products with a universal DNA microarray, which uncouples mutation detection from array hybridization and provides for high sensitivity. Using the three BRCA1 and BRCA2 founder mutations in the Ashkenazi Jewish population (BRCA1 185delAG; BRCA1 5382insC; BRCA2 6174delT) as a model system, the assay readily detected these mutations in multiplexed reactions. Our results demonstrate that universal microarray analysis of PCR/PCR/LDR products permits rapid identification of small insertion and deletion mutations in the context of both clinical diagnosis and population studies.


BMC Cancer | 2003

Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data

Marc E. Lenburg; Louis S. Liou; Norman P. Gerry; Garrett M. Frampton; Herbert T. Cohen; Michael F. Christman

BackgroundRenal cell carcinoma is a common malignancy that often presents as a metastatic-disease for which there are no effective treatments. To gain insights into the mechanism of renal cell carcinogenesis, a number of genome-wide expression profiling studies have been performed. Surprisingly, there is very poor agreement among these studies as to which genes are differentially regulated. To better understand this lack of agreement we profiled renal cell tumor gene expression using genome-wide microarrays (45,000 probe sets) and compare our analysis to previous microarray studies.MethodsWe hybridized total RNA isolated from renal cell tumors and adjacent normal tissue to Affymetrix U133A and U133B arrays. We removed samples with technical defects and removed probesets that failed to exhibit sequence-specific hybridization in any of the samples. We detected differential gene expression in the resulting dataset with parametric methods and identified keywords that are overrepresented in the differentially expressed genes with the Fisher-exact test.ResultsWe identify 1,234 genes that are more than three-fold changed in renal tumors by t-test, 800 of which have not been previously reported to be altered in renal cell tumors. Of the only 37 genes that have been identified as being differentially expressed in three or more of five previous microarray studies of renal tumor gene expression, our analysis finds 33 of these genes (89%). A key to the sensitivity and power of our analysis is filtering out defective samples and genes that are not reliably detected.ConclusionsThe widespread use of sample-wise voting schemes for detecting differential expression that do not control for false positives likely account for the poor overlap among previous studies. Among the many genes we identified using parametric methods that were not previously reported as being differentially expressed in renal cell tumors are several oncogenes and tumor suppressor genes that likely play important roles in renal cell carcinogenesis. This highlights the need for rigorous statistical approaches in microarray studies.


International Journal of Cancer | 2007

Gene expression abnormalities in histologically normal breast epithelium of breast cancer patients

Anusri Tripathi; Chialin King; Antonio de la Morenas; Victoria Kristina Perry; Bohdana Burke; Gregory A. Antoine; Erwin F. Hirsch; Maureen Kavanah; Jane Mendez; Michael D. Stone; Norman P. Gerry; Marc E. Lenburg; Carol L. Rosenberg

Normal‐appearing epithelium of cancer patients can harbor occult genetic abnormalities. Data comprehensively comparing gene expression between histologically normal breast epithelium of breast cancer patients and cancer‐free controls are limited. The present study compares global gene expression between these groups. We performed microarrays using RNA from microdissected histologically normal terminal ductal‐lobular units (TDLU) from 2 groups: (i) cancer normal (CN) (TDLUs adjacent to untreated ER+ breast cancers (n = 14)) and (ii) reduction mammoplasty (RM) (TDLUs of age‐matched women without breast disease (n = 15)). Cyber‐T identified differentially expressed genes. Quantitative RT‐PCR (qRT‐PCR), immunohistochemistry (IHC), and comparison to independent microarray data including 6 carcinomas in situ (CIS), validated the results. Gene ontology (GO), UniProt and published literature evaluated gene function. About 127 probesets, corresponding to 105 genes, were differentially expressed between CN and RM (p < 0.0009, corresponding to FDR <0.10). 104/127 (82%) probesets were also differentially expressed between CIS and RM, nearly always (102/104 (98%)) in the same direction as in CN vs. RM. Two‐thirds of the 105 genes were implicated previously in carcinogenesis. Overrepresented functional groups included transcription, G‐protein coupled and chemokine receptor activity, the MAPK cascade and immediate early genes. Most genes in these categories were under‐expressed in CN vs. RM. We conclude that global gene expression abnormalities exist in normal epithelium of breast cancer patients and are also present in early cancers. Thus, cancer‐related pathways may be perturbed in normal epithelium. These abnormalities could be markers of disease risk, occult disease, or the tissues response to an existing tumor.


BMC Medical Genomics | 2011

A genome-wide association study of serum uric acid in African Americans.

Bashira A. Charles; Daniel Shriner; Ayo Doumatey; Guanjie Chen; Jie Zhou; Hanxia Huang; Alan Herbert; Norman P. Gerry; Michael F. Christman; Adebowale Adeyemo; Charles N. Rotimi

BackgroundUric acid is the primary byproduct of purine metabolism. Hyperuricemia is associated with body mass index (BMI), sex, and multiple complex diseases including gout, hypertension (HTN), renal disease, and type 2 diabetes (T2D). Multiple genome-wide association studies (GWAS) in individuals of European ancestry (EA) have reported associations between serum uric acid levels (SUAL) and specific genomic loci. The purposes of this study were: 1) to replicate major signals reported in EA populations; and 2) to use the weak LD pattern in African ancestry population to better localize (fine-map) reported loci and 3) to explore the identification of novel findings cognizant of the moderate sample size.MethodsAfrican American (AA) participants (n = 1,017) from the Howard University Family Study were included in this study. Genotyping was performed using the Affymetrix® Genome-wide Human SNP Array 6.0. Imputation was performed using MACH and the HapMap reference panels for CEU and YRI. A total of 2,400,542 single nucleotide polymorphisms (SNPs) were assessed for association with serum uric acid under the additive genetic model with adjustment for age, sex, BMI, glomerular filtration rate, HTN, T2D, and the top two principal components identified in the assessment of admixture and population stratification.ResultsFour variants in the gene SLC2A9 achieved genome-wide significance for association with SUAL (p-values ranging from 8.88 × 10-9 to 1.38 × 10-9). Fine-mapping of the SLC2A9 signals identified a 263 kb interval of linkage disequilibrium in the HapMap CEU sample. This interval was reduced to 37 kb in our AA and the HapMap YRI samples.ConclusionsThe most strongly associated locus for SUAL in EA populations was also the most strongly associated locus in this AA sample. This finding provides evidence for the role of SLC2A9 in uric acid metabolism across human populations. Additionally, our findings demonstrate the utility of following-up EA populations GWAS signals in African-ancestry populations with weaker linkage disequilibrium.


The Journal of Molecular Diagnostics | 2005

Reliability and Reproducibility of Gene Expression Measurements Using Amplified RNA from Laser- Microdissected Primary Breast Tissue with Oligonucleotide Arrays

Chialin King; Ning Guo; Garrett M. Frampton; Norman P. Gerry; Marc E. Lenburg; Carol L. Rosenberg

Combined use of microdissection and high-density oligonucleotide arrays is a powerful technique to study in vivo gene expression. Because microdissection generally yields ng quantities of RNA, RNA amplification is necessary but affects array results. We tested the reliability and reproducibility of oligonucleotide array data obtained from small sample amplified RNA isolated from primary tissues via laser capture microdissection, to determine whether gene expression measurements obtained under these now customary conditions are reliable and reproducible enough to detect authentic expression differences between clinical samples. We performed eight U133A Affymetrix GeneChip oligonucleotide array hybridizations using RNA isolated from a single normal human breast specimen: two standard and six small samples prepared using independent microdissections, RNA isolations, and amplifications. We then performed six array hybridizations using RNA obtained similarly from paired normal epithelium and ductal carcinoma in situ from three independent breast specimens. We determined reliability by analysis of hybridization quality metrics, and reproducibility by analysis of the number of more than twofold changed genes, linear regression, and principal components analysis. All amplified RNA generated good quality hybridizations. From the initial specimen, correlations between replicates (r = 0.96 to 0.99) and between small samples (r = 0.94 to 0.98) were high, and between standard and small samples (r = 0.84) were moderate. In contrast, in the three normal cancer pairs, the differences in gene expression were large among the normal samples, the ductal carcinoma in situ samples, and between normal and ductal carcinoma in situ within each pair. These differences were a much larger source of variability than the technical variability introduced by the processes of laser capture microdissection, small sample amplification, and array hybridization. Nanogram quantities of RNA isolated from primary tissue using laser-capture microdissection generates reliable and reproducible gene expression measurements. These measurements do not mirror those obtained using micrograms of RNA. Biological variability in gene expression between independent specimens, and between histologically distinct samples within a specimen, is greater than the technical variability associated with the procedures. Future studies of in vivo gene expression using this approach will identify functionally important differences within or between specimens.


Personalized Medicine | 2010

Coriell Personalized Medicine Collaborative®: a prospective study of the utility of personalized medicine

Margaret A. Keller; Erynn S. Gordon; Catharine B Stack; Neda Gharani; Courtney J Sill; Tara J. Schmidlen; Mintzer Joseph; John Pallies; Norman P. Gerry; Michael F. Christman

There is a dearth of large prospective studies to determine if genetic risk factors are useful predictors of health outcomes and if reporting them to individuals or physicians changes health behavior. The Coriell Personalized Medicine Collaborative® (CPMC, NJ, USA) is a prospective observational study with three cohorts - community, cancer and chronic disease cohorts. Participants provide detailed medical history through a dynamic internet-based portal. DNA is tested and personalized risk reports are provided for potentially actionable health conditions. To date, the community cohort has enrolled 4372 participants. The internet-based portal supplies educational content, captures phenotypic data and delivers customized risk reports. The Informed Cohort Oversight Board has approved 16 health conditions to date, and risk reports with genetic and nongenetic risks for six conditions have been released. The majority (87%) of participants who completed requisite questionnaires viewed at least one report. The CPMC is a cohort study delivering customized risk reports for actionable conditions using a web interface and measuring outcomes longitudinally.


Cancer Research | 2008

The Signatures of Autozygosity among Patients with Colorectal Cancer

Manny D. Bacolod; Gunter S. Schemmann; Shuang Wang; Richard Shattock; Sarah F. Giardina; Zhaoshi Zeng; Jinru Shia; Robert F. Stengel; Norman P. Gerry; Josephine Hoh; Tomas Kirchhoff; Bert Gold; Michael F. Christman; Kenneth Offit; William L. Gerald; Daniel A. Notterman; Jurg Ott; Philip B. Paty; Francis Barany

Previous studies have shown that among populations with a high rate of consanguinity, there is a significant increase in the prevalence of cancer. Single nucleotide polymorphism (SNP) array data (Affymetrix, 50K XbaI) analysis revealed long regions of homozygosity in genomic DNAs taken from tumor and matched normal tissues of colorectal cancer (CRC) patients. The presence of these regions in the genome may indicate levels of consanguinity in the individuals family lineage. We refer to these autozygous regions as identity-by-descent (IBD) segments. In this study, we compared IBD segments in 74 mostly Caucasian CRC patients (mean age of 66 years) to two control data sets: (a) 146 Caucasian individuals (mean age of 80 years) who participated in an age-related macular degeneration (AMD) study and (b) 118 cancer-free Caucasian individuals from the Framingham Heart Study (mean age of 67 years). Our results show that the percentage of CRC patients with IBD segments (>or=4 Mb length and 50 SNPs probed) in the genome is at least twice as high as the AMD or Framingham control groups. Also, the average length of these IBD regions in the CRC patients is more than twice the length of the two control data sets. Compared with control groups, IBD segments are found to be more common among individuals of Jewish background. We believe that these IBD segments within CRC patients are likely to harbor important CRC-related genes with low-penetrance SNPs and/or mutations, and, indeed, two recently identified CRC predisposition SNPs in the 8q24 region were confirmed to be homozygous in one particular patient carrying an IBD segment covering the region.


PLOS ONE | 2009

Transferability and fine-mapping of genome-wide associated loci for adult height across human populations.

Daniel Shriner; Adebowale Adeyemo; Norman P. Gerry; Alan Herbert; Guanjie Chen; Ayo Doumatey; Hanxia Huang; Jie Zhou; Michael F. Christman; Charles N. Rotimi

Human height is the prototypical polygenic quantitative trait. Recently, several genetic variants influencing adult height were identified, primarily in individuals of East Asian (Chinese Han or Korean) or European ancestry. Here, we examined 152 genetic variants representing 107 independent loci previously associated with adult height for transferability in a well-powered sample of 1,016 unrelated African Americans. When we tested just the reported variants originally identified as associated with adult height in individuals of East Asian or European ancestry, only 8.3% of these loci transferred (p-values≤0.05 under an additive genetic model with directionally consistent effects) to our African American sample. However, when we comprehensively evaluated all HapMap variants in linkage disequilibrium (r 2≥0.3) with the reported variants, the transferability rate increased to 54.1%. The transferability rate was 70.8% for associations originally reported as genome-wide significant and 38.0% for associations originally reported as suggestive. An additional 23 loci were significantly associated but failed to transfer because of directionally inconsistent effects. Six loci were associated with adult height in all three groups. Using differences in linkage disequilibrium patterns between HapMap CEU or CHB reference data and our African American sample, we fine-mapped these six loci, improving both the localization and the annotation of these transferable associations.

Collaboration


Dive into the Norman P. Gerry's collaboration.

Top Co-Authors

Avatar

Michael F. Christman

Coriell Institute For Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adebowale Adeyemo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ayo Doumatey

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Charles N. Rotimi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Guanjie Chen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hanxia Huang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jie Zhou

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Daniel Shriner

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Erynn S. Gordon

Coriell Institute For Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge