Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norman Poh is active.

Publication


Featured researches published by Norman Poh.


Pattern Recognition | 2006

Database, protocols and tools for evaluating score-level fusion algorithms in biometric authentication

Norman Poh; Samy Bengio

Fusing the scores of several biometric systems is a very promising approach to improve the overall systems accuracy. Despite many works in the literature, it is surprising that there is no coordinated effort in making a benchmark database available. It should be noted that fusion in this context consists not only of multimodal fusion, but also intramodal fusion, i.e., fusing systems using the same biometric modality but different features, or same features but using different classifiers. Building baseline systems from scratch often prevents researchers from putting more efforts in understanding the fusion problem. This paper describes a database of scores taken from experiments carried out on the XM2VTS face and speaker verification database. It then proposes several fusion protocols and provides some state-of-the-art tools to evaluate the fusion performance.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2010

The Multiscenario Multienvironment BioSecure Multimodal Database (BMDB)

Javier Ortega-Garcia; Julian Fierrez; Fernando Alonso-Fernandez; Javier Galbally; Manuel Freire; Joaquin Gonzalez-Rodriguez; Carmen García-Mateo; Jose-Luis Alba-Castro; Elisardo González-Agulla; Enrique Otero-Muras; Sonia Garcia-Salicetti; Lorene Allano; Bao Ly-Van; Bernadette Dorizzi; Josef Kittler; Thirimachos Bourlai; Norman Poh; Farzin Deravi; Ming Wah R. Ng; Michael C. Fairhurst; Jean Hennebert; Andrea Monika Humm; Massimo Tistarelli; Linda Brodo; Jonas Richiardi; Andrzej Drygajlo; Harald Ganster; Federico M. Sukno; Sri-Kaushik Pavani; Alejandro F. Frangi

A new multimodal biometric database designed and acquired within the framework of the European BioSecure Network of Excellence is presented. It is comprised of more than 600 individuals acquired simultaneously in three scenarios: 1 over the Internet, 2 in an office environment with desktop PC, and 3 in indoor/outdoor environments with mobile portable hardware. The three scenarios include a common part of audio/video data. Also, signature and fingerprint data have been acquired both with desktop PC and mobile portable hardware. Additionally, hand and iris data were acquired in the second scenario using desktop PC. Acquisition has been conducted by 11 European institutions. Additional features of the BioSecure Multimodal Database (BMDB) are: two acquisition sessions, several sensors in certain modalities, balanced gender and age distributions, multimodal realistic scenarios with simple and quick tasks per modality, cross-European diversity, availability of demographic data, and compatibility with other multimodal databases. The novel acquisition conditions of the BMDB allow us to perform new challenging research and evaluation of either monomodal or multimodal biometric systems, as in the recent BioSecure Multimodal Evaluation campaign. A description of this campaign including baseline results of individual modalities from the new database is also given. The database is expected to be available for research purposes through the BioSecure Association during 2008.


international conference on multimedia and expo | 2012

Bi-Modal Person Recognition on a Mobile Phone: Using Mobile Phone Data

Chris McCool; Sébastien Marcel; Abdenour Hadid; Matti Pietikäinen; Pavel Matejka; Jan Cernock ; x Fd; Norman Poh; Josef Kittler; Anthony Larcher; Christophe Lévy; Driss Matrouf; Jean-François Bonastre; Phil Tresadern; Timothy F. Cootes

This paper presents a novel fully automatic bi-modal, face and speaker, recognition system which runs in real-time on a mobile phone. The implemented system runs in real-time on a Nokia N900 and demonstrates the feasibility of performing both automatic face and speaker recognition on a mobile phone. We evaluate this recognition system on a novel publicly-available mobile phone database and provide a well defined evaluation protocol. This database was captured almost exclusively using mobile phones and aims to improve research into deploying biometric techniques to mobile devices. We show, on this mobile phone database, that face and speaker recognition can be performed in a mobile environment and using score fusion can improve the performance by more than 25% in terms of error rates.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2012

A Unified Framework for Biometric Expert Fusion Incorporating Quality Measures

Norman Poh; Josef Kittler

This paper proposes a unified framework for quality-based fusion of multimodal biometrics. Quality-dependent fusion algorithms aim to dynamically combine several classifier (biometric expert) outputs as a function of automatically derived (biometric) sample quality. Quality measures used for this purpose quantify the degree of conformance of biometric samples to some predefined criteria known to influence the system performance. Designing a fusion classifier to take quality into consideration is difficult because quality measures cannot be used to distinguish genuine users from impostors, i.e., they are nondiscriminative yet still useful for classification. We propose a general Bayesian framework that can utilize the quality information effectively. We show that this framework encompasses several recently proposed quality-based fusion algorithms in the literature-Nandakumar et al., 2006; Poh et al., 2007; Kryszczuk and Drygajo, 2007; Kittler et al., 2007; Alonso-Fernandez, 2008; Maurer and Baker, 2007; Poh et al., 2010. Furthermore, thanks to the systematic study concluded herein, we also develop two alternative formulations of the problem, leading to more efficient implementation (with fewer parameters) and achieving performance comparable to, or better than, the state of the art. Last but not least, the framework also improves the understanding of the role of quality in multiple classifier combination.


IEEE Transactions on Information Forensics and Security | 2009

Benchmarking Quality-Dependent and Cost-Sensitive Score-Level Multimodal Biometric Fusion Algorithms

Norman Poh; Thirimachos Bourlai; Josef Kittler; Lorene Allano; Fernando Alonso-Fernandez; Onkar Ambekar; John H. Baker; Bernadette Dorizzi; Omolara Fatukasi; Julian Fierrez; Harald Ganster; Javier Ortega-Garcia; Donald E. Maurer; Albert Ali Salah; Tobias Scheidat; Claus Vielhauer

Automatically verifying the identity of a person by means of biometrics (e.g., face and fingerprint) is an important application in our day-to-day activities such as accessing banking services and security control in airports. To increase the system reliability, several biometric devices are often used. Such a combined system is known as a multimodal biometric system. This paper reports a benchmarking study carried out within the framework of the BioSecure DS2 (Access Control) evaluation campaign organized by the University of Surrey, involving face, fingerprint, and iris biometrics for person authentication, targeting the application of physical access control in a medium-size establishment with some 500 persons. While multimodal biometrics is a well-investigated subject in the literature, there exists no benchmark for a fusion algorithm comparison. Working towards this goal, we designed two sets of experiments: quality-dependent and cost-sensitive evaluation. The quality-dependent evaluation aims at assessing how well fusion algorithms can perform under changing quality of raw biometric images principally due to change of devices. The cost-sensitive evaluation, on the other hand, investigates how well a fusion algorithm can perform given restricted computation and in the presence of software and hardware failures, resulting in errors such as failure-to-acquire and failure-to-match. Since multiple capturing devices are available, a fusion algorithm should be able to handle this nonideal but nevertheless realistic scenario. In both evaluations, each fusion algorithm is provided with scores from each biometric comparison subsystem as well as the quality measures of both the template and the query data. The response to the call of the evaluation campaign proved very encouraging, with the submission of 22 fusion systems. To the best of our knowledge, this campaign is the first attempt to benchmark quality-based multimodal fusion algorithms. In the presence of changing image quality which may be due to a change of acquisition devices and/or device capturing configurations, we observe that the top performing fusion algorithms are those that exploit automatically derived quality measurements. Our evaluation also suggests that while using all the available biometric sensors can definitely increase the fusion performance, this comes at the expense of increased cost in terms of acquisition time, computation time, the physical cost of hardware, and its maintenance cost. As demonstrated in our experiments, a promising solution which minimizes the composite cost is sequential fusion, where a fusion algorithm sequentially uses match scores until a desired confidence is reached, or until all the match scores are exhausted, before outputting the final combined score.


IEEE Transactions on Information Forensics and Security | 2015

Detection of Face Spoofing Using Visual Dynamics

Santosh Tirunagari; Norman Poh; David Windridge; Aamo Iorliam; Nik Suki; Anthony T. S. Ho

Rendering a face recognition system robust is vital in order to safeguard it against spoof attacks carried out using printed pictures of a victim (also known as print attack) or a replayed video of the person (replay attack). A key property in distinguishing a live, valid access from printed media or replayed videos is by exploiting the information dynamics of the video content, such as blinking eyes, moving lips, and facial dynamics. We advance the state of the art in facial antispoofing by applying a recently developed algorithm called dynamic mode decomposition (DMD) as a general purpose, entirely data-driven approach to capture the above liveness cues. We propose a classification pipeline consisting of DMD, local binary patterns (LBPs), and support vector machines (SVMs) with a histogram intersection kernel. A unique property of DMD is its ability to conveniently represent the temporal information of the entire video as a single image with the same dimensions as those images contained in the video. The pipeline of DMD + LBP + SVM proves to be efficient, convenient to use, and effective. In fact only the spatial configuration for LBP needs to be tuned. The effectiveness of the methodology was demonstrated using three publicly available databases: (1) print-attack; (2) replay-attack; and (3) CASIA-FASD, attaining comparable results with the state of the art, following the respective published experimental protocols.


Lecture Notes in Computer Science | 2005

Improving fusion with margin-derived confidence in biometric authentication tasks

Norman Poh; Samy Bengio

This study investigates a new confidence criterion to improve fusion via a linear combination of scores of several biometric authentication systems. This confidence is based on the margin of making a decision, which answers the question, “after observing the score of a given system, what is the confidence (or risk) associated to that given access?”. In the context of multimodal and intramodal fusion, such information proves valuable because the margin information can determine which of the systems should be given higher weights. Finally, we propose a linear discriminative framework to fuse the margin information with an existing global fusion function. The results of 32 fusion experiments carried out on the XM2VTS multimodal database show that fusion using margin (product of margin and expert opinion) is superior over fusion without the margin information (i.e., the original expert opinion). Furthermore, combining both sources of information increases fusion performance further.


Pattern Recognition | 2010

A multimodal biometric test bed for quality-dependent, cost-sensitive and client-specific score-level fusion algorithms

Norman Poh; Thirimachos Bourlai; Josef Kittler

This paper presents a test bed, called the Biosecure DS2 score-and-quality database, for evaluating, comparing and benchmarking score-level fusion algorithms for multimodal biometric authentication. It is designed to benchmark quality-dependent, client-specific, cost-sensitive fusion algorithms. A quality-dependent fusion algorithm is one which attempts to devise a fusion strategy that is dependent on the biometric sample quality. A client-specific fusion algorithm, on the other hand, exploits the specific score characteristics of each enrolled user in order to customize the fusion strategy. Finally, a cost-sensitive fusion algorithm attempts to select a subset of biometric modalities/systems (at a specified cost) in order to obtain the maximal generalization performance. To the best of our knowledge, the BioSecure DS2 data set is the first one designed to benchmark the above three aspects of fusion algorithms. This paper contains some baseline experimental results for evaluating the above three types of fusion scenarios.


systems man and cybernetics | 2010

Quality-Based Score Normalization With Device Qualitative Information for Multimodal Biometric Fusion

Norman Poh; Josef Kittler; Thirimachos Bourlai

As biometric technology is rolled out on a larger scale, it will be a common scenario (known as cross-device matching) to have a template acquired by one biometric device used by another during testing. This requires a biometric system to work with different acquisition devices, an issue known as device interoperability. We further distinguish two subproblems, depending on whether the device identity is known or unknown. In the latter case, we show that the device information can be probabilistically inferred given quality measures (e.g., image resolution) derived from the raw biometric data. By keeping the template unchanged, cross-device matching can result in significant degradation in performance. We propose to minimize this degradation by using device-specific quality-dependent score normalization. In the context of fusion, after having normalized each device output independently, these outputs can be combined using the naive Bayes principal. We have compared and categorized several state-of-the-art quality-based score normalization procedures, depending on how the relationship between quality measures and score is modeled, as follows: 1) direct modeling; 2) modeling via the cluster index of quality measures; and 3) extending 2) to further include the device information (device-specific cluster index). Experimental results carried out on the Biosecure DS2 data set show that the last approach can reduce both false acceptance and false rejection rates simultaneously. Furthermore, the compounded effect of normalizing each system individually in multimodal fusion is a significant improvement in performance over the baseline fusion (without using any quality information) when the device information is given.


ieee workshop on neural networks for signal processing | 2002

A multi-sample multi-source model for biometric authentication

Norman Poh; Samy Bengio; Jerzy J. Korczak

In this study, two techniques that can improve the authentication process are examined: (i) multiple samples and (ii) multiple biometric sources. We propose the fusion of multiple samples obtained from multiple biometric sources at the score level. By using the average operator, both the theoretical and empirical results show that integrating as many samples and as many biometric sources as possible can improve the overall reliability of the system. This strategy is called the multi-sample multi-source approach. This strategy was tested on a real-life database using neural networks trained in one-versus-all configuration.

Collaboration


Dive into the Norman Poh's collaboration.

Researchain Logo
Decentralizing Knowledge