Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Normand Brisson is active.

Publication


Featured researches published by Normand Brisson.


New Phytologist | 2010

Recombination and the maintenance of plant organelle genome stability

Alexandre Maréchal; Normand Brisson

Like their nuclear counterpart, the plastid and mitochondrial genomes of plants have to be faithfully replicated and repaired to ensure the normal functioning of the plant. Inability to maintain organelle genome stability results in plastid and/or mitochondrial defects, which can lead to potentially detrimental phenotypes. Fortunately, plant organelles have developed multiple strategies to maintain the integrity of their genetic material. Of particular importance among these processes is the extensive use of DNA recombination. In fact, recombination has been implicated in both the replication and the repair of organelle genomes. Revealingly, deregulation of recombination in organelles results in genomic instability, often accompanied by adverse consequences for plant fitness. The recent identification of four families of proteins that prevent aberrant recombination of organelle DNA sheds much needed mechanistic light on this important process. What comes out of these investigations is a partial portrait of the recombination surveillance machinery in which plants have co-opted some proteins of prokaryotic origin but have also evolved whole new factors to keep their organelle genomes intact. These new features presumably optimized the protection of plastid and mitochondrial genomes against the particular genotoxic stresses they face.


The Plant Cell | 1995

Creation of a Metabolic Sink for Tryptophan Alters the Phenylpropanoid Pathway and the Susceptibility of Potato to Phytophthora infestans.

K. Yao; V. De Luca; Normand Brisson

The creation of artificial metabolic sinks in plants by genetic engineering of key branch points may have serious consequences for the metabolic pathways being modified. The introduction into potato of a gene encoding tryptophan decarboxylase (TDC) isolated from Catharanthus roseus drastically altered the balance of key substrate and product pools involved in the shikimate and phenylpropanoid pathways. Transgenic potato tubers expressing the TDC gene accumulated tryptamine, the immediate decarboxylation product of the TDC reaction. The redirection of tryptophan into tryptamine also resulted in a dramatic decrease in the levels of tryptophan, phenylalanine, and phenylalanine-derived phenolic compounds in transgenic tubers compared with nontransformed controls. In particular, wound-induced accumulation of chlorogenic acid, the major soluble phenolic ester in potato tubers, was found to be two- to threefold lower in transgenic tubers. Thus, the synthesis of polyphenolic compounds, such as lignin, was reduced due to the limited availability of phenolic monomers. Treatment of tuber discs with arachidonic acid, an elicitor of the defense response, led to a dramatic accumulation of soluble and cell wall-bound phenolics in tubers of untransformed potato plants but not in transgenic tubers. The transgenic tubers were also more susceptible to infection after inoculation with zoospores of Phytophthora infestans, which could be attributed to the modified cell wall of these plants. This study provides strong evidence that the synthesis and accumulation of phenolic compounds, including lignin, could be regulated by altering substrate availability through the introduction of a single gene outside the pathway involved in substrate supply. This study also indicates that phenolics, such as chlorogenic acid, play a critical role in defense responses of plants to fungal attack.


Nature Biotechnology | 2001

Direct visualization of protein interactions in plant cells

Rajagopal Subramaniam; Darrell Desveaux; Catherine Spickler; Stephen W. Michnick; Normand Brisson

The protein NPR1/NIM1 is required for the induction of systemic acquired resistance (SAR) in plants and has been shown to interact with members of the TGA/OBF family of basic leucine zipper (bZIP) transcription factors. However, to date, there is no method available to monitor such interactions in plant cells. We report here an in vivo protein fragment complementation assay (PCA), based on association of reconstituted murine dihydrofolate reductase (mDHFR) with a fluorescent probe to detect protein–protein interaction in planta. We demonstrate that the interaction between Arabidopsis NPR1/NIM1 and the bZIP factor TGA2 is induced by the regulators of SAR, salicylic acid (SA), and its analog 2,6-dichloroisonicotinic acid (INA) with distinct species-specific responses. Furthermore, the induced interaction is localized predominantly in the nucleus. Protein fragment complementation assays could be of value to agricultural research by providing a system for high-throughput biochemical pathway mapping and for screening of small molecules that modulate protein interactions.


The Plant Cell | 1995

The Activation of the Potato PR-10a Gene Requires the Phosphorylation of the Nuclear Factor PBF-1.

Charles Després; Rajagopal Subramaniam; Daniel P. Matton; Normand Brisson

The pathogenesis-related gene PR-10a (formerly STH[middot]2) is induced in various organs of potato after wounding, elicitor treatment, or infection by Phytophthora infestans. Deletion analysis of the promoter of the PR-10a gene enabled us to identify a 50-bp region, located between positions -155 and -105, necessary for the elicitor responsiveness of the [beta]-glucuronidase reporter gene in transgenic potato plants. Within this region, a 30-bp sequence, located between positions -135 and -105, was necessary for the activation of the promoter by the elicitor. However, strong promoter activity after elicitor treatment required the presence of a 20-bp sequence located between positions -155 and -135. The region between -135 and -105 was specifically recognized by two nuclear factors, PBF-1 (PR-10a Binding Factor 1) and PBF-2, and binding of PBF-1 was coordinated with the accumulation of the PR-10a mRNA. Gel shift assays using nuclear extracts pretreated with sodium deoxycholate or alkaline phosphatase suggested that PBF-1 is a multimeric factor in which at least one of the constituent proteins can be phosphorylated. Treatment with alkaline phosphatase also indicated that binding of PBF-1 is positively regulated by phosphorylation and that it is phosphorylated only in tissues in which PR-10a is expressed. The use of protein phosphatase and kinase inhibitors in vivo provided additional evidence that wounding and elicitor treatment induce the phosphorylation of PBF-1 and that this phosphorylation is associated with gene activation.


The Plant Cell | 2000

PBF-2 Is a Novel Single-Stranded DNA Binding Factor Implicated in PR-10a Gene Activation in Potato

Darrell Desveaux; Charles Després; Alexandre Joyeux; Rajagopal Subramaniam; Normand Brisson

Elicitor-induced activation of the potato pathogenesis-related gene PR-10a requires a 30-bp promoter sequence termed the ERE (elicitor response element) that is bound by the nuclear factor PBF-2 (PR-10a binding factor 2). In this study, PBF-2 has been purified to near homogeneity from elicited tubers through a combination of anion-exchange and DNA affinity chromatography. Evidence demonstrates that inactive PBF-2 is stored in the nuclei of fresh tubers and becomes available for binding to the ERE upon elicitation. A protein with an apparent molecular mass of 24 kD (p24) is a DNA binding component of PBF-2. A cDNA encoding p24 has been cloned and encodes a novel protein with a potential transcriptional activation domain that could also act as a single-stranded DNA binding domain. Both PBF-2 and the cDNA-encoded protein bind with high affinity to the single-stranded form of the ERE in a sequence-specific manner. The inverted repeat sequence of the ERE, TGACAnnnnTGTCA, is critical for binding of this factor in vitro and for PR-10a expression in vivo, supporting the role of PBF-2 as a transcriptional regulator.


The Plant Cell | 1997

A functional homolog of mammalian protein kinase C participates in the elicitor-induced defense response in potato.

Rajagopal Subramaniam; Charles Després; Normand Brisson

The elicitor-induced activation of the potato pathogenesis-related gene PR-10a is positively controlled by a protein kinase(s) that affects the binding of the nuclear factors PBF-1 (for PR-10a binding factor-1) and PBR-2 to an elicitor response element (ERE). In this study, we have identified a kinase that has properties similar to the conventional isoenzymes of the mammalian protein kinase C (PKC) family. the treatment of potato tuber discs with specific inhibitors of PKC abolished the elicitor-induced binding of the nuclear factor PBF-2 to the ERE. This correlated with a reduction in the accumulation of the PR-10a protein. In contrast, treatment of the tuber discs with 12-O-tetradecanoylphorbol 13-acetate (TPA), an activator of PKC, led to an increase in binding of PBF-2 to the ERE and the corresponding increase in the level of the PR-10a protein, mimicking the effect seen with the elicitor arachidonic acid. Biochemical characterization of proteins extracted from the particulate fraction of potato tubers demonstrated that a kinase belonging to the conventional isoforms of PKC is present. This was confirmed by immunoprecipitation with antibodies specific to the conventional isoforms of human PKC and in-gel kinase assays. The ability of the immunoprecipitates to phosphorylate the alpha-peptide (a PKC specific substrate) in the presence of the coactivators calcium, phosphatidylserine, and TPA strongly suggested that the immunoprecipitated kinase is similar to the kinase characterized biochemically. Finally, the similar effects of the various modulators of PKC activity on the elicitor-induced resistance against a compatible race of Phytophthora infestans implicate this kinase in the overall defense response in potato.


The Plant Cell | 2010

Crystal Structures of DNA-Whirly Complexes and Their Role in Arabidopsis Organelle Genome Repair

Laurent Cappadocia; Alexandre Maréchal; Jean-Sébastien Parent; Étienne Lepage; Jurgen Sygusch; Normand Brisson

This work examines the repair of DNA double-strand breaks in the mitochondria and plastids of Arabidopsis. The crystal structures of a Whirly protein bound to single-stranded DNA suggest a role for these proteins in DNA damage tolerance in the organelles. DNA double-strand breaks are highly detrimental to all organisms and need to be quickly and accurately repaired. Although several proteins are known to maintain plastid and mitochondrial genome stability in plants, little is known about the mechanisms of DNA repair in these organelles and the roles of specific proteins. Here, using ciprofloxacin as a DNA damaging agent specific to the organelles, we show that plastids and mitochondria can repair DNA double-strand breaks through an error-prone pathway similar to the microhomology-mediated break-induced replication observed in humans, yeast, and bacteria. This pathway is negatively regulated by the single-stranded DNA (ssDNA) binding proteins from the Whirly family, thus indicating that these proteins could contribute to the accurate repair of plant organelle genomes. To understand the role of Whirly proteins in this process, we solved the crystal structures of several Whirly-DNA complexes. These reveal a nonsequence-specific ssDNA binding mechanism in which DNA is stabilized between domains of adjacent subunits and rendered unavailable for duplex formation and/or protein interactions. Our results suggest a model in which the binding of Whirly proteins to ssDNA would favor accurate repair of DNA double-strand breaks over an error-prone microhomology-mediated break-induced replication repair pathway.


The Plant Cell | 2012

The Conjugated Auxin Indole-3-Acetic Acid–Aspartic Acid Promotes Plant Disease Development

Rocío González-Lamothe; Mohamed El Oirdi; Normand Brisson; Kamal Bouarab

Auxin conjugation promotes susceptibility to pathogens. This study reveals that during infection with fungi and bacteria, auxin conjugation is increased in the plant to produce IAA-Asp, which regulates the expression of virulence genes and induces plant susceptibility to pathogens. Auxin is a pivotal plant hormone that regulates many aspects of plant growth and development. Auxin signaling is also known to promote plant disease caused by plant pathogens. However, the mechanism by which this hormone confers susceptibility to pathogens is not well understood. Here, we present evidence that fungal and bacterial plant pathogens hijack the host auxin metabolism in Arabidopsis thaliana, leading to the accumulation of a conjugated form of the hormone, indole-3-acetic acid (IAA)-Asp, to promote disease development. We also show that IAA-Asp increases pathogen progression in the plant by regulating the transcription of virulence genes. These data highlight a novel mechanism to promote plant susceptibility to pathogens through auxin conjugation.


Nature Structural & Molecular Biology | 2002

A new family of plant transcription factors displays a novel ssDNA-binding surface

Darrell Desveaux; Julie Allard; Normand Brisson; Jurgen Sygusch

The crystal structure of p24, the single-stranded DNA (ssDNA) binding subunit of the plant defense transcription factor PBF-2, has been determined to 2.3 Å resolution. p24 is representative of a novel family of ubiquitous plant-specific proteins that we refer to as the Whirly family because of their quaternary structure. PBF-2 is composed of four p24 molecules that interact through a helix-loop-helix motif. This interaction produces a central pore, with β-strands radiating outwards, resulting in a whirligig appearance to the quaternary structure. The noncrystallographic C4 symmetry arrangement of p24 subunits is novel for ssDNA binding proteins and may explain the binding specificity of PBF-2. This structural arrangement also supports the role of PBF-2 in binding melted promoter regions to modulate gene expression.


The Plant Cell | 1989

Maturation and subcellular compartmentation of potato starch phosphorylase.

Normand Brisson; Helene Giroux; Max Zollinger; Anne Camirand; Claire Simard

The subcellular localization and maturation of starch phosphorylase (EC 2.4.1.1) was studied in developing potato tubers. The enzyme is localized inside the stroma of amyloplasts in young tubers, whereas in mature tubers it is found within the cytoplasm in the immediate vicinity of the plastids. A phosphorylase cDNA clone was isolated and used in RNA gel blot experiments to demonstrate that phosphorylase mRNAs are of the same size and abundance in both young and mature tubers. In vitro translation of mRNAs followed by immunoprecipitation with a phosphorylase antiserum indicates that the enzyme is synthesized as a higher molecular weight precursor in both young and mature tubers. The presence of a transit peptide at the N terminus of the protein was confirmed by the sequencing of the phosphorylase cDNA clone. The transit peptide has several structural features common to transit peptides of chloroplast proteins but contains a surprisingly large number of histidine residues. The mature form of the enzyme is present in both young and mature tubers, suggesting that a similar processing of the transit peptide may take place in two different subcellular locations.

Collaboration


Dive into the Normand Brisson's collaboration.

Top Co-Authors

Avatar

Kamal Bouarab

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Fouad Daayf

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jurgen Sygusch

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Éric Zampini

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge