Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nosratola D. Vaziri is active.

Publication


Featured researches published by Nosratola D. Vaziri.


The New England Journal of Medicine | 2013

Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease

Dick de Zeeuw; Tadao Akizawa; Paul Audhya; George L. Bakris; Melanie Chin; Heidi Christ-Schmidt; Angie Goldsberry; Mark Houser; Melissa Krauth; Hiddo J. Lambers Heerspink; John J.V. McMurray; Colin J. Meyer; Hans-Henrik Parving; Giuseppe Remuzzi; Robert D. Toto; Nosratola D. Vaziri; Christoph Wanner; Janet Wittes; Danielle Wrolstad; Glenn M. Chertow

BACKGROUND Although inhibitors of the renin-angiotensin-aldosterone system can slow the progression of diabetic kidney disease, the residual risk is high. Whether nuclear 1 factor (erythroid-derived 2)-related factor 2 activators further reduce this risk is unknown. METHODS We randomly assigned 2185 patients with type 2 diabetes mellitus and stage 4 chronic kidney disease (estimated glomerular filtration rate [GFR], 15 to <30 ml per minute per 1.73 m(2) of body-surface area) to bardoxolone methyl, at a daily dose of 20 mg, or placebo. The primary composite outcome was end-stage renal disease (ESRD) or death from cardiovascular causes. RESULTS The sponsor and the steering committee terminated the trial on the recommendation of the independent data and safety monitoring committee; the median follow-up was 9 months. A total of 69 of 1088 patients (6%) randomly assigned to bardoxolone methyl and 69 of 1097 (6%) randomly assigned to placebo had a primary composite outcome (hazard ratio in the bardoxolone methyl group vs. the placebo group, 0.98; 95% confidence interval [CI], 0.70 to 1.37; P=0.92). In the bardoxolone methyl group, ESRD developed in 43 patients, and 27 patients died from cardiovascular causes; in the placebo group, ESRD developed in 51 patients, and 19 patients died from cardiovascular causes. A total of 96 patients in the bardoxolone methyl group were hospitalized for heart failure or died from heart failure, as compared with 55 in the placebo group (hazard ratio, 1.83; 95% CI, 1.32 to 2.55; P<0.001). Estimated GFR, blood pressure, and the urinary albumin-to-creatinine ratio increased significantly and body weight decreased significantly in the bardoxolone methyl group, as compared with the placebo group. CONCLUSIONS Among patients with type 2 diabetes mellitus and stage 4 chronic kidney disease, bardoxolone methyl did not reduce the risk of ESRD or death from cardiovascular causes. A higher rate of cardiovascular events with bardoxolone methyl than with placebo prompted termination of the trial. (Funded by Reata Pharmaceuticals; BEACON ClinicalTrials.gov number, NCT01351675.).


Hypertension | 2000

Induction of Oxidative Stress by Glutathione Depletion Causes Severe Hypertension in Normal Rats

Nosratola D. Vaziri; Xiu Q. Wang; Behdad Rad

Several recent studies have shown that certain forms of genetic or acquired hypertension are associated with oxidative stress and that animals with those types of hypertension respond favorably to antioxidant therapy. We hypothesize that oxidative stress may cause hypertension via (among other mechanisms) enhanced oxidation and inactivation of nitric oxide (NO). To test this hypothesis, Sprague-Dawley rats were subjected to oxidative stress by glutathione (GSH) depletion by means of the GSH synthase inhibitor buthionine sulfoximine (BSO, 30 mmol/L in drinking water) for 2 weeks. The control group was given drug-free drinking water. In parallel experiments, subgroups of animals were provided vitamin E-fortified chow and vitamin C-supplemented drinking water. The BSO-treated group showed a 3-fold decrease in tissue GSH content, a marked elevation in blood pressure, and a significant reduction in the urinary excretion of the NO metabolite nitrate plus nitrite, which suggests depressed NO availability. These characteristics were associated with a significant accumulation in various tissues of nitrotyrosine, which is the footprint of NO inactivation by reactive oxygen species. Administration of vitamin E plus vitamin C ameliorated hypertension, improved urinary nitrate-plus-nitrite excretion, and mitigated nitrotyrosine accumulation (despite GSH depletion) in the BSO-treated animals but had no effect in the control group. In conclusion, GSH depletion resulted in perturbation of the NO system and severe hypertension in normal animals. The effects of BSO were mitigated by concomitant antioxidant therapy despite GSH depletion, which supports the notion that oxidative stress was involved in the pathogenesis of hypertension in this model.


Kidney International | 2013

Chronic kidney disease alters intestinal microbial flora

Nosratola D. Vaziri; Jakk Wong; Madeleine V. Pahl; Yvette M. Piceno; Jun Yuan; Todd Z. DeSantis; Zhenmin Ni; Tien-Hung Nguyen; Gary L. Andersen

The population of microbes (microbiome) in the intestine is a symbiotic ecosystem conferring trophic and protective functions. Since the biochemical environment shapes the structure and function of the microbiome, we tested whether uremia and/or dietary and pharmacologic interventions in chronic kidney disease alters the microbiome. To identify different microbial populations, microbial DNA was isolated from the stools of 24 patients with end-stage renal disease (ESRD) and 12 healthy persons, and analyzed by phylogenetic microarray. There were marked differences in the abundance of 190 bacterial operational taxonomic units (OTUs) between the ESRD and control groups. OTUs from Brachybacterium, Catenibacterium, Enterobacteriaceae, Halomonadaceae, Moraxellaceae, Nesterenkonia, Polyangiaceae, Pseudomonadaceae, and Thiothrix families were markedly increased in patients with ESRD. To isolate the effect of uremia from inter-individual variations, comorbid conditions, and dietary and medicinal interventions, rats were studied 8 weeks post 5/6 nephrectomy or sham operation. This showed a significant difference in the abundance of 175 bacterial OTUs between the uremic and control animals, most notably as decreases in the Lactobacillaceae and Prevotellaceae families. Thus, uremia profoundly alters the composition of the gut microbiome. The biological impact of this phenomenon is unknown and awaits further investigation.


Environmental Health Perspectives | 2008

Circulating Biomarkers of Inflammation, Antioxidant Activity, and Platelet Activation Are Associated with Primary Combustion Aerosols in Subjects with Coronary Artery Disease

Ralph J. Delfino; Norbert Staimer; Thomas Tjoa; Andrea Polidori; Mohammad Arhami; Daniel L. Gillen; Micheal T. Kleinman; Nosratola D. Vaziri; John C. Longhurst; Frank Zaldivar; Constantinos Sioutas

Background Biomarkers of systemic inflammation have been associated with risk of cardiovascular morbidity and mortality. Objectives We aimed to clarify associations of particulate matter (PM) air pollution with systemic inflammation using models based on size-fractionated PM mass and markers of primary and secondary aerosols. Methods We followed a panel of 29 nonsmoking elderly subjects with a history of coronary artery disease (CAD) living in retirement communities in the Los Angeles, California, air basin. Blood plasma biomarkers were measured weekly over 12 weeks and included C-reactive protein (CRP), fibrinogen, tumor necrosis factor-α (TNF-α) and its soluble receptor-II (sTNF-RII), interleukin-6 (IL-6) and its soluble receptor (IL-6sR), fibrin D-dimer, soluble platelet selectin (sP-selectin), soluble vascular cell adhesion molecule-1 (sVCAM-1), intracellular adhesion molecule-1 (sICAM-1), and myeloperoxidase (MPO). To assess changes in antioxidant capacity, we assayed erythrocyte lysates for glutathione peroxidase-1 (GPx-1) and copper-zinc superoxide dismutase (Cu,Zn-SOD) activities. We measured indoor and outdoor home daily size-fractionated PM mass, and hourly pollutant gases, total particle number (PN), fine PM elemental carbon (EC) and organic carbon (OC), estimated secondary organic aerosol (SOA) and primary OC (OCpri) from total OC, and black carbon (BC). We analyzed data with mixed models controlling for temperature and excluding weeks with infections. Results We found significant positive associations for CRP, IL-6, sTNF-RII, and sP-selectin with outdoor and/or indoor concentrations of quasi-ultrafine PM ≤ 0.25 μm in diameter, EC, OCpri, BC, PN, carbon monoxide, and nitrogen dioxide from the current-day and multiday averages. We found consistent positive but largely nonsignificant coefficients for TNF-α, sVCAM-1, and sICAM-1, but not fibrinogen, IL-6sR, or D-dimer. We found inverse associations for erythrocyte Cu,Zn-SOD with these pollutants and other PM size fractions (0.25–2.5 and 2.5–10 μm). Inverse associations of GPx-1 and MPO with pollutants were largely nonsignificant. Indoor associations were often stronger for estimated indoor EC, OCpri, and PN of outdoor origin than for uncharacterized indoor measurements. There was no evidence for positive associations with SOA. Conclusions Results suggest that traffic emission sources of OCpri and quasi-ultrafine particles lead to increased systemic inflammation and platelet activation and decreased antioxidant enzyme activity in elderly people with CAD.


Circulation | 2002

Effect of diet and exercise intervention on blood pressure, insulin, oxidative stress, and nitric oxide availability.

Christian K. Roberts; Nosratola D. Vaziri; R. James Barnard

Background—Diet and exercise can affect blood pressure and atherosclerotic risk. Methods and Results—The present study was designed to examine the effects of a short-term, rigorous diet and exercise intervention on blood pressure, hyperinsulinemia, and nitric oxide (NO) availability. Men (n=11) were placed on a low-fat, high-fiber diet combined with daily exercise for 45 to 60 minutes for 3 weeks. Pre- and post fasting blood was drawn for serum lipid, insulin, 8-isoprostaglandin F2&agr; (8-iso-PGF2&agr;), and glucose measurements. Anthropometric parameters, blood pressure (BP), and 24-hour urinary NO metabolite excretion (NOX), a marker of NO bioavailability, were measured. Systolic (P <0.01) and diastolic BP (P <0.01) and 8-iso-PGF2&agr; decreased (P <0.05), whereas urinary NOX increased (P <0.05). There was a significant reduction in fasting insulin (P <0.01) and a significant correlation between the decrease in serum insulin and the increase in urinary NOX (r2=0.68, P <0.05). All fasting lipids decreased significantly, and the total cholesterol to high-density lipoprotein cholesterol ratio improved. Although body weight and body mass index (P <0.01) decreased, obesity was still present and there were no correlations between the change in body mass index and the change in insulin, BP, or urinary NOX. Conclusions—This intervention resulted in dramatic improvements in BP, oxidative stress, NO availability, and the metabolic profile within 3 weeks, mitigating the risk for atherosclerosis progression and its clinical sequelae.


Kidney International | 2008

The aging kidney.

Xin J. Zhou; Dinesh Rakheja; Xueqing Yu; Ramesh Saxena; Nosratola D. Vaziri; Fred G. Silva

Renal aging, by itself, is associated with alterations in renal morphology and a decline in renal function, which is accelerated and/or accentuated by diseases such as diabetes mellitus and hypertension. The aging-related renal insufficiency has important implications with regards to body homeostasis, drug toxicity, and renal transplantation. An understanding of renal aging and its distinction from renal insufficiency secondary to diseases is essential for individualized care of the elderly. Toward this end, investigations are underway to elucidate the molecular mechanisms of renal aging. This review summarizes the structural and functional changes of the aging kidney and highlights the advances made in our understanding of the renal aging process.


American Journal of Physiology-renal Physiology | 2010

Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure

Hyun Ju Kim; Nosratola D. Vaziri

Oxidative stress and inflammation are constant features and major mediators of progression of chronic kidney disease (CKD). Nuclear factor erythroid-2-related factor-2 (Nrf2) confers protection against tissue injury by orchestrating antioxidant and detoxification responses to oxidative and electrophilic stress. While sources of oxidative stress and inflammation in the remnant kidney have been extensively characterized, the effect of CKD on Nrf2 activation and expression of its downstream gene products is unknown and was investigated. Subgroups of male Sprague-Dawley rats were subjected to 5/6 nephrectomy or sham operation and observed for 6 or 12 wk. Kidneys were then harvested, and Nrf2 activity and its downstream target gene products (antioxidant and phase II enzymes) were assessed. In addition, key factors involved in promoting inflammation and oxidative stress were studied. In confirmation of earlier studies, rats with chronic renal failure exhibited increased lipid peroxidation, glutathione depletion, NF-kappaB activation, mononuclear cell infiltration, and upregulation of monocyte chemoattractant protein-1, NAD(P)H oxidase, cyclooxygenase-2, and 12-lipoxygenase in the remnant kidney pointing to oxidative stress and inflammation. Despite severe oxidative stress and inflammation, remnant kidney tissue Nrf2 activity (nuclear translocation) was mildly reduced at 6 wk and markedly reduced at 12 wk, whereas the Nrf2 repressor Keap1 was upregulated and the products of Nrf2 target genes [catalase, superoxide dismutase, glutathione peroxidase, heme oxygenase-1, NAD(P)H quinone oxidoreductase, and glutamate-cysteine ligase] were reduced or unchanged at 6 wk and significantly diminished at 12 wk. Thus oxidative stress and inflammation in the remnant kidney are compounded by conspicuous impairment of Nrf2 activation and consequent downregulation of the antioxidant enzymes.


Hypertension | 1998

Upregulation of Renal and Vascular Nitric Oxide Synthase in Young Spontaneously Hypertensive Rats

Nosratola D. Vaziri; Zhenmin Ni

The available data on the role of the L-arginine/nitric oxide (NO) pathway in the genesis of hypertension in spontaneously hypertensive rats (SHR) are limited and contradictory. In an attempt to address this issue, male SHR were studied during the early phase of evolution of hypertension (age 8 to 12 weeks) to distinguish the primary changes of NO metabolism from those caused by advanced hypertension, vasculopathy, and aging late in the course of the disease. A group of age-matched male Wistar-Kyoto rats (WKY) served as controls. The SHR exhibited a marked rise in arterial blood pressure and a significant increase in urinary excretion and plasma concentration of NO metabolites (nitrite/nitrate [NOx]). Likewise, the SHR showed a significant elevation of thoracic aorta NO synthase (NOS) activity coupled with significant increases of kidney, aorta, inducible NOS (iNOS), and endothelial NOS (eNOS) proteins. In an attempt to determine whether the enhanced L-arginine/NO pathway is a consequence of hypertension, studies were repeated using 3-week-old animals before the onset of hypertension. The study revealed significant increases in urinary NOx excretion as well as vascular eNOS and renal iNOS proteins. In conclusion, the L-arginine/NO pathway is upregulated in young SHR both before and after the onset of hypertension. Thus, development of hypertension is not due to a primary impairment of NO production in SHR. On the contrary, NO production is increased in young SHR both before and after the onset of hypertension.


Nature Reviews Nephrology | 2006

Mechanisms of disease: oxidative stress and inflammation in the pathogenesis of hypertension.

Nosratola D. Vaziri; Bernardo Rodriguez-Iturbe

Animal studies have shown that oxidative stress and renal tubulointerstitial inflammation are associated with, and have major roles in, the pathogenesis of hypertension. This view is supported by the observations that alleviation of oxidative stress and renal tubulointerstitial inflammation reduce arterial pressure in animal models. Conversely, hypertension has been shown to cause oxidative stress and inflammation in renal and cardiovascular tissues in experimental animals. Taken together, these observations indicate that oxidative stress, inflammation and arterial hypertension participate in a self-perpetuating cycle which, if not interrupted, can lead to progressive cardiovascular disease and renal complications. These events usually occur in an insidious and asymptomatic manner over an extended period following the onset of hypertension. Severe target organ injury can, however, occasionally occur precipitously in the course of malignant or accelerated hypertension. Given the high degree of heterogeneity of hypertensive disorders, the factor(s) initiating the vicious cycle described vary considerably in different forms of hypertension. For instance, oxidative stress in the kidney and vascular tissue is the primary mediator in the pathogenesis of angiotensin-induced, and perhaps lead-induced, hypertension. By contrast, increased arterial pressure is probably the initiating trigger in salt-sensitive hypertension. Although the initiating factor might vary between hypertensive disorders, according to the proposed model, the three components of the cycle eventually coalesce in all forms of hypertension.


Environmental Health Perspectives | 2009

Air Pollution Exposures and Circulating Biomarkers of Effect in a Susceptible Population: Clues to Potential Causal Component mixtures and mechanisms

Ralph J. Delfino; Norbert Staimer; Thomas Tjoa; Daniel L. Gillen; Andrea Polidori; Mohammad Arhami; Micheal T. Kleinman; Nosratola D. Vaziri; John C. Longhurst; Constantinos Sioutas

Background Mechanisms involving oxidative stress and inflammation have been proposed to explain associations of ambient air pollution with cardiovascular morbidity and mortality. Experimental evidence suggests that organic components and ultrafine particles (UFP) are important. Methods We conducted a panel study of 60 elderly subjects with coronary artery disease living in retirement communities within the Los Angeles, California, air basin. Weekly biomarkers of inflammation included plasma interleukin-6, tumor necrosis factor-α soluble receptor II (sTNF-RII), soluble platelet selectin (sP-selectin), and C-reactive protein (CRP). Biomarkers of erythrocyte antioxidant activity included glutathione peroxidase-1 and superoxide dismutase. Exposures included outdoor home daily particle mass [particulate matter < 0.25, 0.25–2.5, and 2.5–10 μm in aerodynamic diameter (PM0.25, PM0.25–2.5, PM2.5–10)], and hourly elemental and black carbon (EC–BC), estimated primary and secondary organic carbon (OCpri, SOC), particle number (PN), carbon monoxide (CO), and nitrogen oxides–nitrogen dioxide (NOx–NO2). We analyzed the relation of biomarkers to exposures with mixed effects models adjusted for potential confounders. Results Primary combustion markers (EC–BC, OCpri, CO, NOx–NO2), but not SOC, were positively associated with inflammatory biomarkers and inversely associated with erythrocyte anti-oxidant enzymes (n = 578). PN and PM0.25 were more strongly associated with biomarkers than PM0.25–2.5. Associations for all exposures were stronger during cooler periods when only OCpri, PN, and NOx were higher. We found weaker associations with statin (sTNF-RII, CRP) and clopidogrel use (sP-selectin). Conclusions Traffic-related air pollutants are associated with increased systemic inflammation, increased platelet activation, and decreased erythrocyte antioxidant enzyme activity, which may be partly behind air pollutant–related increases in systemic inflammation. Differences in association by particle size, OC fraction, and seasonal period suggest components carried by UFP are important.

Collaboration


Dive into the Nosratola D. Vaziri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhenmin Ni

University of California

View shared research outputs
Top Co-Authors

Avatar

Hamid Moradi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin J. Zhou

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

M. V. Pahl

University of California

View shared research outputs
Top Co-Authors

Avatar

Kaihui Liang

University of California

View shared research outputs
Top Co-Authors

Avatar

Yaoxian Ding

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan N. Elias

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge