Nouar Qutob
Weizmann Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nouar Qutob.
Oncotarget | 2016
Shelly Kalaora; Eilon Barnea; Efrat Merhavi-Shoham; Nouar Qutob; Jamie K. Teer; Nilly Shimony; Jacob Schachter; Steven A. Rosenberg; Michal J. Besser; Arie Admon; Yardena Samuels
The antigenicity of cells is demarcated by the peptides bound by their Human Leucocyte Antigen (HLA) molecules. Through this antigen presentation, T cell specificity response is controlled. As a fraction of the expressed mutated peptides is presented on the HLA, these neo-epitopes could be immunogenic. Such neoantigens have recently been identified through screening for predicted mutated peptides, using synthetic peptides or ones expressed from minigenes, combined with screening of patient tumor-infiltrating lymphocytes (TILs). Here we present a time and cost-effective method that combines whole-exome sequencing analysis with HLA peptidome mass spectrometry, to identify neo-antigens in a melanoma patient. Of the 1,019 amino acid changes identified through exome sequencing, two were confirmed by mass spectrometry to be presented by the cells. We then synthesized peptides and evaluated the two mutated neo-antigens for reactivity with autologous bulk TILs, and found that one yielded mutant-specific T-cell response. Our results demonstrate that this method can be used for immune response prediction and promise to provide an alternative approach for identifying immunogenic neo-epitopes in cancer.
Nature Genetics | 2015
Rand Arafeh; Nouar Qutob; Rafi Emmanuel; Alona Keren-Paz; Jason Madore; Abdel G. Elkahloun; James S. Wilmott; Jared J. Gartner; Antonella Di Pizio; Sabina Winograd-Katz; Sivasish Sindiri; Ron Rotkopf; Ken Dutton-Regester; Peter A. Johansson; Antonia L. Pritchard; Nicola Waddell; Victoria Hill; Jimmy C. Lin; Yael Hevroni; Steven A. Rosenberg; Javed Khan; Shifra Ben-Dor; Masha Y. Niv; Igor Ulitsky; Graham J. Mann; Richard A. Scolyer; Nicholas K. Hayward; Yardena Samuels
Analysis of 501 melanoma exomes identified RASA2, encoding a RasGAP, as a tumor-suppressor gene mutated in 5% of melanomas. Recurrent loss-of-function mutations in RASA2 were found to increase RAS activation, melanoma cell growth and migration. RASA2 expression was lost in ≥30% of human melanomas and was associated with reduced patient survival. These findings identify RASA2 inactivation as a melanoma driver and highlight the importance of RasGAPs in cancer.
Pigment Cell & Melanoma Research | 2015
Valer Gotea; Jared J. Gartner; Nouar Qutob; Laura Elnitski; Yardena Samuels
Recent technological advances in sequencing have flooded the field of cancer research with knowledge about somatic mutations for many different cancer types. Most cancer genomics studies focus on mutations that alter the amino acid sequence, ignoring the potential impact of synonymous mutations. However, accumulating experimental evidence has demonstrated clear consequences for gene function, leading to a widespread recognition of the functional role of synonymous mutations and their causal connection to various diseases. Here, we review the evidence supporting the direct impact of synonymous mutations on gene function via gene splicing; mRNA stability, folding, and translation; protein folding; and miRNA‐based regulation of expression. These results highlight the functional contribution of synonymous mutations to oncogenesis and the need to further investigate their detection and prioritization for experimental assessment.
Journal of Investigative Dermatology | 2014
Todd D. Prickett; Brad J. Zerlanko; Victoria Hill; Jared J. Gartner; Nouar Qutob; Jiji Jiang; May Simaan; John R. Wunderlich; J. Silvio Gutkind; Steven A. Rosenberg; Yardena Samuels
The ionotropic glutamate receptors (NMDAR) are composed of large complexes of multi-protein subunits creating ion channels in the cell plasma membranes that allow for influx or efflux of mono- or divalent cations (e.g., Ca2+) important for synaptic transmissions, cellular migration and survival. Recently, we discovered the high prevalence of somatic mutations within one of the ionotropic glutamate receptors, GRIN2A, in malignant melanoma. Functional characterization of a subset of GRIN2A mutants demonstrated a loss of NMDAR complex formation between GRIN1 and GRIN2A, increased anchorage-independent growth in soft agar, and increased migration. Somatic mutation of GRIN2A results in a dominant negative effect inhibiting the tumor suppressive phenotype of wild type GRIN2A in melanoma. Depletion of endogenous GRIN2A in melanoma cells expressing wild-type GRIN2A resulted in increased proliferation compared to control. In contrast, shRNA depletion of GRIN2A in mutant cell lines slightly reduced proliferation. Our data shows that somatic mutation of GRIN2A results in increased survival and is the first such report to demonstrate the functional importance of GRIN2A mutations in melanoma and the significance ionotropic glutamate receptor signaling plays in malignant melanoma.
Neurology Genetics | 2016
Rivka Inzelberg; Yardena Samuels; Esther Azizi; Nouar Qutob; Lilah Inzelberg; Eytan Domany; Edna Schechtman; Eitan Friedman
Objective: To assess whether Parkinson disease (PD) genes are somatically mutated in cutaneous melanoma (CM) tissue, because CM occurs in patients with PD at higher rates than in the general population and PD is more common than expected in CM cohorts. Methods: We cross-referenced somatic mutations in metastatic CM detected by whole-exome sequencing with the 15 known PD (PARK) genes. We computed the empirical distribution of the sum of mutations in each gene (Smut) and of the number of tissue samples in which a given gene was mutated at least once (SSampl) for each of the analyzable genes, determined the 90th and 95th percentiles of the empirical distributions of these sums, and verified the location of PARK genes in these distributions. Identical analyses were applied to adenocarcinoma of lung (ADENOCA-LUNG) and squamous cell carcinoma of lung (SQUAMCA-LUNG). We also analyzed the distribution of the number of mutated PARK genes in CM samples vs the 2 lung cancers. Results: Somatic CM mutation analysis (n = 246) detected 315,914 mutations in 18,758 genes. Somatic CM mutations were found in 14 of 15 PARK genes. Forty-eight percent of CM samples carried ≥1 PARK mutation and 25% carried multiple PARK mutations. PARK8 mutations occurred above the 95th percentile of the empirical distribution for SMut and SSampl. Significantly more CM samples harbored multiple PARK gene mutations compared with SQUAMCA-LUNG (p = 0.0026) and with ADENOCA-LUNG (p < 0.0001). Conclusions: The overrepresentation of somatic PARK mutations in CM suggests shared dysregulated pathways for CM and PD.
Scientific Reports | 2018
Nouar Qutob; Ikuo Masuho; Michal Alon; Rafi Emmanuel; Isadora S. Cohen; Antonella Di Pizio; Jason Madore; Abdel G. Elkahloun; Tamar Ziv; Ronen Levy; Jared J. Gartner; Victoria Hill; Jimmy C. Lin; Yael Hevroni; Polina Greenberg; Alexandra Brodezki; Steven A. Rosenberg; Mickey Kosloff; Nicholas K. Hayward; Arie Admon; Masha Y. Niv; Richard A. Scolyer; Kirill A. Martemyanov; Yardena Samuels
Analysis of 501 melanoma exomes revealed RGS7, which encodes a GTPase-accelerating protein (GAP), to be a tumor-suppressor gene. RGS7 was mutated in 11% of melanomas and was found to harbor three recurrent mutations (p.R44C, p.E383K and p.R416Q). Structural modeling of the most common recurrent mutation of the three (p.R44C) predicted that it destabilizes the protein due to the loss of an H-bond and salt bridge network between the mutated position and the serine and aspartic acid residues at positions 58 as 61, respectively. We experimentally confirmed this prediction showing that the p.R44C mutant protein is indeed destabilized. We further show RGS7 p.R44C has weaker catalytic activity for its substrate Gαo, thus providing a dual mechanism for its loss of function. Both of these effects are expected to contribute to loss of function of RGS7 resulting in increased anchorage-independent growth, migration and invasion of melanoma cells. By mutating position 56 in the R44C mutant from valine to cysteine, thereby enabling the formation of a disulfide bridge between the two mutated positions, we slightly increased the catalytic activity and reinstated protein stability, leading to the rescue of RGS7′s function as a tumor suppressor. Our findings identify RGS7 as a novel melanoma driver and point to the clinical relevance of using strategies to stabilize the protein and, thereby, restore its function.
Pigment Cell & Melanoma Research | 2018
Michal Alon; Rafi Emmanuel; Nouar Qutob; Anna Bakhman; Victoria Peshti; Alexandra Brodezki; David Bassan; Mickey Kosloff; Yardena Samuels
The NRAS oncoprotein is highly mutated in melanoma. However, to date, no comprehensive proteomic study has been reported for NRAS. Here, we utilized the endogenous epitope tagging (EET) approach for the identification of novel NRAS binding partners. Using EET, an epitope tag is added to the endogenously expressed protein, via modification of its genomic coding sequence. Existing EET systems are not robust, suffer from high background, and are labor‐intensive. To this end, we present a polyadenylation signal‐trap construct for N’‐tagging that generates a polycistronic mRNA with the gene of interest. This system requires the integration of the tagging cassette in frame with the target gene to be expressed. Using this design, we demonstrate, for the first time, endogenous tagging of NRAS in melanoma cells allowing the identification of the E3 ubiquitin ligase c‐CBL as a novel NRAS binding partner. Thus, our developed EET technology allows the characterization of new RAS effectors, which could be beneficial for the design of future drugs that inhibit constitutive signaling of RAS oncogenic mutants.
Cancer Discovery | 2018
Shelly Kalaora; Yochai Wolf; Tali Feferman; Eilon Barnea; Erez Greenstein; Dan Reshef; Itay Tirosh; Alexandre Reuben; Sushant Patkar; Ronen Levy; Juliane Quinkhardt; Tana Omokoko; Nouar Qutob; Ofra Golani; Jianhua Zhang; Xizeng Mao; Xingzhi Song; Chantale Bernatchez; Cara Haymaker; Marie-Andree Forget; Caitlin Creasy; Polina Greenberg; Brett W. Carter; Zachary A. Cooper; Steven A. Rosenberg; Michal Lotem; Ugur Sahin; Guy Shakhar; Eytan Ruppin; Jennifer A. Wargo
The quest for tumor-associated antigens (TAA) and neoantigens is a major focus of cancer immunotherapy. Here, we combine a neoantigen prediction pipeline and human leukocyte antigen (HLA) peptidomics to identify TAAs and neoantigens in 16 tumors derived from seven patients with melanoma and characterize their interactions with their tumor-infiltrating lymphocytes (TIL). Our investigation of the antigenic and T-cell landscapes encompassing the TAA and neoantigen signatures, their immune reactivity, and their corresponding T-cell identities provides the first comprehensive analysis of cancer cell T-cell cosignatures, allowing us to discover remarkable antigenic and TIL similarities between metastases from the same patient. Furthermore, we reveal that two neoantigen-specific clonotypes killed 90% of autologous melanoma cells, both in vitro and in vivo, showing that a limited set of neoantigen-specific T cells may play a central role in melanoma tumor rejection. Our findings indicate that combining HLA peptidomics with neoantigen predictions allows robust identification of targetable neoantigens, which could successfully guide personalized cancer immunotherapies.Significance: As neoantigen targeting is becoming more established as a powerful therapeutic approach, investigating these molecules has taken center stage. Here, we show that a limited set of neoantigen-specific T cells mediates tumor rejection, suggesting that identifying just a few antigens and their corresponding T-cell clones could guide personalized immunotherapy. Cancer Discov; 8(11); 1366-75. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 1333.
Cancer Cell | 2018
Yong Yu; Kolja Schleich; Bin Yue; Sujuan Ji; Philipp Lohneis; Kristel Kemper; Mark R. Silvis; Nouar Qutob; Ellen van Rooijen; Melanie Werner-Klein; Lianjie Li; Dhriti Dhawan; Svenja Meierjohann; Maurice Reimann; Abdel G. Elkahloun; Steffi Treitschke; Bernd Dörken; Christian Speck; Frédérick A. Mallette; Leonard I. Zon; Sheri L. Holmen; Daniel S. Peeper; Yardena Samuels; Clemens A. Schmitt; Soyoung Lee
Yong Yu, Kolja Schleich, Bin Yue, Sujuan Ji, Philipp Lohneis, Kristel Kemper, Mark R. Silvis, Nouar Qutob, Ellen van Rooijen, Melanie Werner-Klein, Lianjie Li, Dhriti Dhawan, Svenja Meierjohann, Maurice Reimann, Abdel Elkahloun, Steffi Treitschke, Bernd Dörken, Christian Speck, Frédérick A. Mallette, Leonard I. Zon, Sheri L. Holmen, Daniel S. Peeper, Yardena Samuels, Clemens A. Schmitt,* and Soyoung Lee *Correspondence: [email protected] https://doi.org/10.1016/j.ccell.2018.03.009
Cancer Research | 2017
Rand Arafeh; Nouar Qutob; Rafi Emmanuel; Jason Madore; Abdel G. Elkahloun; James S. Wilmott; Jared J. Gartner; Antonella Di Pizio; Ron Rotkopf; Ken Dutton-Regester; Victoria Hill; Antonia L. Pritchard; Jimmy Lin; Steven A. Rosenberg; Javed Khan; Shifra Ben-Dor; Masha Y. Niv; Igor Ulitsky; Graham J. Mann; Richard A. Scolyer; Nicholas K. Hayward; Yardena Samuels
Melanoma is the deadliest form of human skin cancer. The incidence of melanoma continues to rise. Recent advances in knowledge of melanoma genetics, genomics and biology has led to an optimistic view of the therapeutic outlook for melanoma patients. We analyzed sequence data from >500 melanoma genomes/exomes to identify novel tumor suppressor genes in melanoma. RASA2 was identified as the most highly somatically mutated novel tumor suppressor gene. RASA2 was mutated in 5% of melanomas and deleted in an additional 16.4% of cases. RASA2 is a GTPase Activating Protein (GAP) that regulates RAS; which is one of the most highly mutated oncogenes in melanoma but drugs targeting RAS have as yet shown poor efficacy. The role of RASA2 has not been investigated in melanoma. NF1, which encodes another RAS- specific GAP, was found to be frequently mutated in melanoma. Interestingly, mutations in RASA2 and NF1 co-occur in the same patients with high frequency. We plan to elucidate the roles of RASA2 in melanomagenesis and to understand why RASA2 and NF1 mutations co-occur despite the fact that both proteins are RasGAPs. Ras includes three isoforms: NRas, KRas and HRas. Our preliminary data show that RASA2 is more specific to NRAS and that NF1 is more specific to KRAS and HRAS. This finding highlights the existence of a paradigm of cooperativity in which combined loss of multiple negative regulators (RASA2 and NF1) of the RAS pathway is required for melanoma development. Therefore, this type of enhancement of RAS signaling is possibly selected for in some melanomas. We will apply a proteomic screen using BioID to identify RASA2 and NF1 binding partners to provide insights into the functional effects and consequences of alterations in RASA2 and NF1. We expect that these studies will not only identify the cellular components that contribute to the Ras signaling pathway but will also identify potential novel therapeutic targets. Citation Format: Rand Arafeh, Nouar Qutob, Rafi Rafi Emmanuel, Jason Madore, Abdel Elkahloun, James S. James S. Wilmott, Jared J. Gartner, Antonella Di Pizio, Ron Rotkopf, Ken Dutton-Regester, Victoria Hill, Antonia Pritchard, Jimmy C. Lin, Steven A Rosenberg, Javed Khan, Shifra Ben-Dor, Masha Y. Masha Y. Niv, Igor Ulitsky, Graham J Mann, Richard A. Scolyer, Nicholas K. Hayward, Yardena Samuels. Deciphering distinct roles of RASA2 in melanomagenesis [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr LB-031. doi:10.1158/1538-7445.AM2017-LB-031