Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nour Nijem is active.

Publication


Featured researches published by Nour Nijem.


Angewandte Chemie | 2012

Enhanced Binding Affinity, Remarkable Selectivity, and High Capacity of CO2 by Dual Functionalization of a rht‐Type Metal–Organic Framework

Baiyan Li; Zhijuan Zhang; Yi Li; Kexin Yao; Yihan Zhu; Zhiyong Deng; Fen Yang; Xiaojing Zhou; Guanghua Li; Haohan Wu; Nour Nijem; Yves J. Chabal; Zhiping Lai; Yu Han; Zhan Shi; Shouhua Feng; Jing Li

This work was supported by the Foundation of the National Natural Science Foundation of China (grant numbers 20971054 and 90922034) and the Key Project of the Chinese Ministry of Education. The RU and UTD teams would like to acknowledge support from DOE (grant number DE-FG02-08ER46491). We thank Prof. Xianhe Bu and Dr. Ze Chang (Nankai University, China) and Dr. Ruiping Chen (Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences) for part of the gas adsorption measurements.


Chemistry: A European Journal | 2011

Enhancing gas adsorption and separation capacity through ligand functionalization of microporous metal-organic framework structures

Yonggang Zhao; Haohan Wu; Thomas J. Emge; Qihan Gong; Nour Nijem; Yves J. Chabal; Lingzhu Kong; David C. Langreth; Hui Liu; Heping Zeng; Jing Li

Hydroxyl- and amino- functionalized [Zn(BDC)(TED)(0.5)]·2DMF·0.2H(2)O leads to two new structures, [Zn(BDC-OH)(TED)(0.5)]·1.5DMF·0.3H(2)O and [Zn(BDC-NH(2))(TED)(0.5)]·xDMF·yH(2)O (BDC=terephthalic acid, TED=triethylenediamine, BDC-OH=2-hydroxylterephthalic acid, BDC-NH(2)=2-aminoterephthalic acid). Single-crystal X-ray diffraction and powder X-ray diffraction studies confirmed that the structures of both functionalized compounds are very similar to that of their parent structure. Compound [Zn(BDC)(TED)(0.5)]·2DMF·0.2H(2)O can be considered a 3D porous structure with three interlacing 1D channels, whereas both [Zn(BDC-OH)(TED)(0.5)]·1.5DMF·0.3H(2)O and [Zn(BDC-NH(2))(TED)(0.5)]·xDMF·yH(2)O contain only 1D open channels as a result of functionalization of the BDC ligand by the OH and NH(2) groups. A notable decrease in surface area and pore size is thus observed in both compounds. Consequently, [Zn(BDC)(TED)(0.5)]·2DMF·0.2H(2)O takes up the highest amount of H(2) at low temperatures. Interestingly, however, both [Zn(BDC-OH)(TED)(0.5)]·1.5DMF·0.3H(2)O and [Zn(BDC-NH(2))(TED)(0.5)]·xDMF·yH(2)O show significant enhancement in CO(2) uptake at room temperature, suggesting that the strong interactions between CO(2) and the functionalized ligands, indicating that surface chemistry, rather than porosity, plays a more important role in CO(2) adsorption. A comparison of single-component CO(2), CH(4), CO, N(2), and O(2) adsorption isotherms demonstrates that the adsorption selectivity of CO(2) over other small gases is considerably enhanced through functionalization of the frameworks. Infrared absorption spectroscopic measurements and theoretical calculations are also carried out to assess the effect of functional groups on CO(2) and H(2) adsorption potentials.


Inorganic Chemistry | 2009

ℝPM3: A Multifunctional Microporous MOF with Recyclable Framework and High H2 Binding Energy†

Anjian Lan; Kunhao Li; Haohan Wu; Lingzhu Kong; Nour Nijem; David H. Olson; Thomas J. Emge; Yves J. Chabal; David C. Langreth; Maochun Hong; Jing Li

A microporous metal organic framework structure, Zn(2)(bpdc)(2)(bpee).2DMF (DMF: N,N-dimethylformamide), has been synthesized via solvothermal reactions. The compound is a new member of the RPM series (RPM = Rutgers Recyclable Porous Material) that possesses a flexible and recyclable three-dimensional framework containing one-dimensional channels. It exhibits interesting and multifold functionality, including porosity, commensurate adsorption for hydrocarbons, high hydrogen binding energy (determined by isosteric heats of hydrogen adsorption and confirmed by van der Waals density functional calculations) as a result of multifold binding to aromatic ligands (determined by IR spectroscopy), strong photoluminescence emission, and reversible fluorescence quenching properties.


ACS Nano | 2012

Metal-graphene-metal sandwich contacts for enhanced interface bonding and work function control

Cheng Gong; David Hinojos; Weichao Wang; Nour Nijem; Bin Shan; Robert M. Wallace; Kyeongjae Cho; Yves J. Chabal

Only a small fraction of all available metals has been used as electrode materials for carbon-based devices due to metal-graphene interface debonding problems. We report an enhancement of the bonding energy of weakly interacting metals by using a metal-graphene-metal sandwich geometry, without sacrificing the intrinsic π-electron dispersions of graphene that is usually undermined by strong metal-graphene interface hybridization. This sandwich structure further makes it possible to effectively tune the doping of graphene with an appropriate selection of metals. Density functional theory calculations reveal that the strengthening of the interface interaction is ascribed to an enhancement of interface dipole-dipole interactions. Raman scattering studies of metal-graphene-copper sandwiches are used to validate the theoretically predicted tuning of graphene doping through sandwich structures.


Journal of the American Chemical Society | 2010

Interaction of molecular hydrogen with microporous metal organic framework materials at room temperature.

Nour Nijem; Jean François Veyan; Lingzhu Kong; Kunhao Li; Sanhita Pramanik; Yonggang Zhao; Jing Li; David C. Langreth; Yves J. Chabal

Infrared (IR) absorption spectroscopy measurements, performed at 300 K and high pressures (27-55 bar) on several prototypes of metal organic framework (MOF) materials, reveal that the MOF ligands are weakly perturbed upon incorporation of guest molecules and that the molecular hydrogen (H(2)) stretch mode is red-shifted (30-40 cm(-1)) from its unperturbed value (4155 cm(-1) for ortho H(2)). For MOFs of the form M(bdc)(ted)(0.5) (bdc = 1,4-benzenedicarboxylate; ted = triethylenediamine), H(2) molecules interact with the organic ligands instead of the saturated metal centers located at the corners of the unit cell. First-principles van der Waals density functional calculations identify the binding sites and further show that the induced dipole associated with the trapped H(2) depends sensitively on these sites. For M(bdc)(ted)(0.5) systems, the strongest dipole moment is of the site that is in the corner of the unit cell and is dominated by the interaction with the benzene ligand and not by the metal center. For MOFs of the M(3)[HCOO](6) type with relatively short ligands (i.e., formate) and 1-D pore structures, there is a weak dependence of H(2) vibrational frequency on the cations, due to a small change in the unit cell dimension. Furthermore, translational states of approximately +/-100 cm(-1) are clearly observed as side bands on the H(2) stretch mode in these 1-D channels interconnected by very small apertures. The H(2) stretch IR integrated areas in all the MOFs considered in this work increase linearly with H(2) pressure, consistent with isotherm measurements performed in similar conditions. However, the IR intensity varies substantially, depending on the number of benzene rings interacting with the H(2) molecules. Finally, there is no correlation between H(2) binding energies (determined by isotherm measurements) and the magnitude of the H(2) stretch shift, indicating that IR shifts are dominated by the environment (organic ligand, metal center, and structure) rather than the strength of the interaction. These results highlight the relevance of IR spectroscopy to determine the type and arrangement of ligands in the structure of MOFs.


Angewandte Chemie | 2013

Mechanism of Carbon Dioxide Adsorption in a Highly Selective Coordination Network Supported by Direct Structural Evidence

Anna M. Plonka; Debasis Banerjee; William R. Woerner; Zhijuan Zhang; Nour Nijem; Yves J. Chabal; Jing Li; John B. Parise

Understanding the interactions between adsorbed gas molecules and a pore surface at molecular level is vital to exploration and attempts at rational development of gasselective nanoporous solids. Much current work focuses on the design of functionalized metal–organic frameworks (MOFs) or coordination networks (CNs) that selectively adsorb CO2. [1–9] While interactions between CO2 molecules and the p clouds of aromatic linkers in MOFs under ambient conditions have been explored theoretically, no direct structure evidence of such interactions are reported to date. Here we provide the first structural insight of such interactions in a porous calcium based CN using single-crystal X-ray diffraction methods, supported by powder diffraction coupled with differential scanning calorimetry (DSC-XRD), in situ IR/Raman spectroscopy, and molecular simulation data. We further postulate that such interactions are responsible for the high CO2/N2 adsorption selectivity, even in the case of a high relative humidity (RH). Our data suggest that the key interaction responsible for such selectivity, the room-temperature stability and the relative insensitivity to the RH of the CO2-CN adduct, is between two phenyl rings of the linker in the CN and the molecular quadrupole of CO2. The specific geometry of the linker molecule results in a “pocket” where carbon from the CO2 molecule is placed between two centroids of the aromatic ring. Our experimental confirmation of this variation on theoretically postulated interactions between CO2 and a phenyl ring will promote the search for other CNs containing phenyl ring pockets. Selective adsorption and sequestration of CO2 from sources of anthropogenic emissions, such as untreated waste from flue gas and products of the water gas shift reaction, is important to mitigate the growing level of atmospheric CO2. [10] Current separation methods use absorption in alkanolamine solutions, which are toxic, corrosive, and require significant energy for their regeneration. Hence microporous solid-state adsorbents, such as zeolites, hybrid zeolite–polymer systems, porous organic materials, and MOFs are proposed as alternatives, especially in combination with pressure swing processes. Rather than relying solely on tuning the pore diameters of microporous materials to select between gases based on size (the kinetic diameters of CO2, CH4 and N2 are 3.30, 3.76 3.64 , respectively ) selective separation relies on differences in electronic properties, such as the quadrupole moment and polarizability. Attempts to produce MOFs or CNs with adsorption properties competitive with those of commercially established aluminosilicate zeolites, relies on strategies that include pore surface modification with strongly polarizing functional groups, such as amines 7, 9,15] and desolvating metals centers 8, 16] to produce low-coordinated sites suitable for CO2 adsorption. The amine-functionalized materials offer a high selectivity toward CO2 adsorption, but a low effective surface area and thus, a low total uptake capacity. Strong interactions with polarizing functional groups, as well as with open metal sites presents other drawbacks including an increase in the costs for material regeneration. Furthermore, water effectively competes with CO2 at low-coordinated cation sites, impeding the performance of frameworks in commercial flue gas. We recently described a porous framework, CaSDB (SDB: sulfonyldibenzoate, compound 1) with a high CO2/N2 selectivity. At 0.15 bar of CO2 and 0.85 bar of N2, a typical composition of flue gas mixture from power plants, the selectivity is in the range of 48 to 85 at 298 K. CaSDB shows a reversible uptake of CO2 of 5.75 wt% at 273 K and 1 bar pressure and 4.37 wt% at room temperature, with heats of adsorption for CO2 and N2 of 31 and 19 kJmol , respectively. The as-synthesized compound contains not coordinated water molecules and is easily activated for gas adsorption by heating to 563 K in vacuum; remarkably the activated framework does not readsorb water, even if exposed to a RH greater than [*] A. M. Plonka, W. R. Woerner, Prof. Dr. J. B. Parise Department of Geosciences, Stony Brook University Stony Brook, NY 11794-2100 (USA) E-mail: [email protected]


Physical Review Letters | 2013

Diffusion of small molecules in metal organic framework materials.

Pieremanuele Canepa; Nour Nijem; Yves J. Chabal; Timo Thonhauser

Ab initio simulations are combined with in situ infrared spectroscopy to unveil the molecular transport of H2, CO2, and H2O in the metal organic framework MOF-74-Mg. Our study uncovers--at the atomistic level--the major factors governing the transport mechanism of these small molecules. In particular, we identify four key diffusion mechanisms and calculate the corresponding diffusion barriers, which are nicely confirmed by time-resolved infrared experiments. We also answer a long-standing question about the existence of secondary adsorption sites for the guest molecules, and we show how those sites affect the macroscopic diffusion properties. Our findings are important to gain a fundamental understanding of the diffusion processes in these nanoporous materials, with direct implications for the usability of MOFs in gas sequestration and storage applications.


Journal of the American Chemical Society | 2013

Water Cluster Confinement and Methane Adsorption in the Hydrophobic Cavities of a Fluorinated Metal–Organic Framework

Nour Nijem; Pieremanuele Canepa; Ushasree Kaipa; Kui Tan; Katy Roodenko; Sammer M. Tekarli; Jason Halbert; Iain W. H. Oswald; Ravi K. Arvapally; Chi Yang; Timo Thonhauser; Mohammad A. Omary; Yves J. Chabal

Water cluster formation and methane adsorption within a hydrophobic porous metal organic framework is studied by in situ vibrational spectroscopy, adsorption isotherms, and first-principle DFT calculations (using vdW-DF). Specifically, the formation and stability of H2O clusters in the hydrophobic cavities of a fluorinated metal-organic framework (FMOF-1) is examined. Although the isotherms of water show no measurable uptake (see Yang et al. J. Am. Chem. Soc. 2011 , 133 , 18094 ), the large dipole of the water internal modes makes it possible to detect low water concentrations using IR spectroscopy in pores in the vicinity of the surface of the solid framework. The results indicate that, even in the low pressure regime (100 mTorr to 3 Torr), water molecules preferentially occupy the large cavities, in which hydrogen bonding and wall hydrophobicity foster water cluster formation. We identify the formation of pentameric water clusters at pressures lower than 3 Torr and larger clusters beyond that pressure. The binding energy of the water species to the walls is negligible, as suggested by DFT computational findings and corroborated by IR absorption data. Consequently, intermolecular hydrogen bonding dominates, enhancing water cluster stability as the size of the cluster increases. The formation of water clusters with negligible perturbation from the host may allow a quantitative comparison with experimental environmental studies on larger clusters that are in low concentrations in the atmosphere. The stability of the water clusters was studied as a function of pressure reduction and in the presence of methane gas. Methane adsorption isotherms for activated FMOF-1 attained volumetric adsorption capacities ranging from 67 V(STP)/V at 288 K and 31 bar to 133 V(STP)/V at 173 K and 5 bar, with an isosteric heat of adsorption of ca. 14 kJ/mol in the high temperature range (288-318 K). Overall, the experimental and computational data suggest high preferential uptake for methane gas relative to water vapor within FMOF-1 pores with ease of desorption and high framework stability under operative temperature and moisture conditions.


Journal of Physics: Condensed Matter | 2012

Spectroscopic characterization of van der Waals interactions in a metal organic framework with unsaturated metal centers: MOF-74-Mg.

Nour Nijem; Pieremanuele Canepa; Lingzhu Kong; Haohan Wu; Jing Li; Timo Thonhauser; Yves J. Chabal

The adsorption energies of small molecules in nanoporous materials are often determined by isotherm measurements. The nature of the interaction and the response of the host material, however, can best be studied by spectroscopic methods. We show here that infrared absorption and Raman spectroscopy measurements together with density functional theory calculations, utilizing the novel van der Waals density functional vdW-DF, constitute a powerful approach to studying the weak van der Waals interactions associated with the incorporation of small molecules in these materials. In particular, we show how vdW-DF assists the interpretation of the vibrational spectroscopy data to uncover the binding sites and energies of these molecules, including the subtle dependence on loading of the IR asymmetric stretch mode of CO(2) when adsorbed in MOF-74-Mg. To gain a better understanding of the adsorption mechanism of CO(2) in MOF-74-Mg, the results are compared with CO within MOF-74-Mg.


Physical Review B | 2012

Analyzing the frequency shift of physiadsorbed CO 2 in metal organic framework materials

Yanpeng Yao; Nour Nijem; Jing Li; Yves J. Chabal; David C. Langreth; Timo Thonhauser

Combining first-principles density functional theory simulations with IR and Raman experiments, we determine the frequency shift of vibrational modes of CO2 when physiadsorbed in the iso-structural metal organic framework materials Mg-MOF74 and Zn-MOF74. Surprisingly, we find that the resulting change in shift is rather different for these two systems and we elucidate possible reasons. We explicitly consider three factors responsible for the frequency shift through physiabsorption, namely (i) the change in the molecule length, (ii) the asymmetric distortion of the CO

Collaboration


Dive into the Nour Nijem's collaboration.

Top Co-Authors

Avatar

Yves J. Chabal

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth J. Balkus

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Pieremanuele Canepa

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge