Noura S. Abul-Husn
Icahn School of Medicine at Mount Sinai
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Noura S. Abul-Husn.
Molecular & Cellular Proteomics | 2007
Jose A. Morón; Noura S. Abul-Husn; Raphael Rozenfeld; Georgia Dolios; Rong Wang; Lakshmi A. Devi
Numerous studies have shown that drugs of abuse induce changes in protein expression in the brain that are thought to play a role in synaptic plasticity. Drug-induced plasticity can be mediated by changes at the synapse and more specifically at the postsynaptic density (PSD), which receives and transduces synaptic information. To date, the majority of studies examining synaptic protein profiles have focused on identifying the synaptic proteome. Only a handful of studies have examined the changes in synaptic profile by drug administration. We applied a quantitative proteomics analysis technique with the cleavable ICAT reagent to quantitate relative changes in protein levels of the hippocampal PSD in response to morphine administration. We identified a total of 102 proteins in the mouse hippocampal PSD. The majority of these were signaling, trafficking, and cytoskeletal proteins involved in synaptic plasticity, learning, and memory. Among the proteins whose levels were found to be altered by morphine administration, clathrin levels were increased to the largest extent. Immunoblotting and electron microscopy studies showed that this increase was localized to the PSD. Morphine treatment was also found to lead to a local increase in two other components of the endocytic machinery, dynamin and AP-2, suggesting a critical involvement of the endocytic machinery in the modulatory effects of morphine. Because α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are thought to undergo clathrin-mediated endocytosis, we examined the effect of morphine administration on the association of the AMPA receptor subunit, GluR1, with clathrin. We found a substantial decrease in the levels of GluR1 associated with clathrin. Taken together, these results suggest that, by causing a redistribution of endocytic proteins at the synapse, morphine modulates synaptic plasticity at hippocampal glutamatergic synapses.
Science | 2016
Frederick E. Dewey; Michael F. Murray; John D. Overton; Lukas Habegger; Joseph B. Leader; Samantha N. Fetterolf; Colm O’Dushlaine; Cristopher V. Van Hout; Jeffrey Staples; Claudia Gonzaga-Jauregui; Raghu Metpally; Sarah A. Pendergrass; Monica A. Giovanni; H. Lester Kirchner; Suganthi Balasubramanian; Noura S. Abul-Husn; Dustin N. Hartzel; Daniel R. Lavage; Korey A. Kost; Jonathan S. Packer; Alexander E. Lopez; John Penn; Semanti Mukherjee; Nehal Gosalia; Manoj Kanagaraj; Alexander H. Li; Lyndon J. Mitnaul; Lance J. Adams; Thomas N. Person; Kavita Praveen
Unleashing the power of precision medicine Precision medicine promises the ability to identify risks and treat patients on the basis of pathogenic genetic variation. Two studies combined exome sequencing results for over 50,000 people with their electronic health records. Dewey et al. found that ∼3.5% of individuals in their cohort had clinically actionable genetic variants. Many of these variants affected blood lipid levels that could influence cardiovascular health. Abul-Husn et al. extended these findings to investigate the genetics and treatment of familial hypercholesterolemia, a risk factor for cardiovascular disease, within their patient pool. Genetic screening helped identify at-risk patients who could benefit from increased treatment. Science, this issue p. 10.1126/science.aaf6814, p. 10.1126/science.aaf7000 More than 50,000 exomes, coupled with electronic health records, inform on medically relevant genetic variants. INTRODUCTION Large-scale genetic studies of integrated health care populations, with phenotypic data captured natively in the documentation of clinical care, have the potential to unveil genetic associations that point the way to new biology and therapeutic targets. This setting also represents an ideal test bed for the implementation of genomics in routine clinical care in service of precision medicine. RATIONALE The DiscovEHR collaboration between the Regeneron Genetics Center and Geisinger Health System aims to catalyze genomic discovery and precision medicine by coupling high-throughput exome sequencing to longitudinal electronic health records (EHRs) of participants in Geisinger’s MyCode Community Health Initiative. Here, we describe initial insights from whole-exome sequencing of 50,726 adult participants of predominantly European ancestry using clinical phenotypes derived from EHRs. RESULTS The median duration of EHR data associated with sequenced participants was 14 years, with a median of 87 clinical encounters, 687 laboratory tests, and seven procedures per participant. Forty-eight percent of sequenced individuals had one or more first- or second-degree relatives in the sample, and genome-wide autozygosity was similar to other outbred European populations. We found ~4.2 million single-nucleotide variants and insertion/deletion events, of which ~176,000 are predicted to result in loss of gene function (LoF). The overwhelming majority of these genetic variants occurred at a minor allele frequency of ≤1%, and more than half were singletons. Each participant harbored a median of 21 rare predicted LoFs. At this sample size, ~92% of sequenced genes, including genes that encode existing drug targets or confer risk for highly penetrant genetic diseases, harbor rare heterozygous predicted LoF variants. About 7% of sequenced genes contained rare homozygous predicted LoF variants in at least one individual. Linking these data to EHR-derived laboratory phenotypes revealed consequences of partial or complete LoF in humans. Among these were previously unidentified associations between predicted LoFs in CSF2RB and basophil and eosinophil counts, and EGLN1-associated erythrocytosis segregating in genetically identified family networks. Using predicted LoFs as a model for drug target antagonism, we found associations supporting the majority of therapeutic targets for lipid lowering. To highlight the opportunity for genotype-phenotype association discovery, we performed exome-wide association analyses of EHR-derived lipid values, newly implicating rare predicted LoFs, and deleterious missense variants in G6PC in association with triglyceride levels. In a survey of 76 clinically actionable disease-associated genes, we estimated that 3.5% of individuals harbor pathogenic or likely pathogenic variants that meet criteria for clinical action. Review of the EHR uncovered findings associated with the monogenic condition in ~65% of pathogenic variant carriers’ medical records. CONCLUSION The findings reported here demonstrate the value of large-scale sequencing in an integrated health system population, add to the knowledge base regarding the phenotypic consequences of human genetic variation, and illustrate the challenges and promise of genomic medicine implementation. DiscovEHR provides a blueprint for large-scale precision medicine initiatives and genomics-guided therapeutic target discovery. Therapeutic target validation and genomic medicine in DiscovEHR. (A) Associations between predicted LoF variants in lipid drug target genes and lipid levels. Boxes correspond to effect size, given as the absolute value of effect, in SD units; whiskers denote 95% confidence intervals for effect. The size of the box is proportional to the logarithm (base 10) of predicted LoF carriers. (B and C) Prevalence and expressivity of clinically actionable genetic variants in 76 disease genes, according to EHR data. G76, Geisinger-76. The DiscovEHR collaboration between the Regeneron Genetics Center and Geisinger Health System couples high-throughput sequencing to an integrated health care system using longitudinal electronic health records (EHRs). We sequenced the exomes of 50,726 adult participants in the DiscovEHR study to identify ~4.2 million rare single-nucleotide variants and insertion/deletion events, of which ~176,000 are predicted to result in a loss of gene function. Linking these data to EHR-derived clinical phenotypes, we find clinical associations supporting therapeutic targets, including genes encoding drug targets for lipid lowering, and identify previously unidentified rare alleles associated with lipid levels and other blood level traits. About 3.5% of individuals harbor deleterious variants in 76 clinically actionable genes. The DiscovEHR data set provides a blueprint for large-scale precision medicine initiatives and genomics-guided therapeutic discovery.
JAMA | 2016
Sara L. Van Driest; Quinn S. Wells; Sarah Stallings; William S. Bush; Adam S. Gordon; Deborah A. Nickerson; Jerry H. Kim; David R. Crosslin; Gail P. Jarvik; David Carrell; James D. Ralston; Eric B. Larson; Suzette J. Bielinski; Janet E. Olson; Zi Ye; Iftikhar J. Kullo; Noura S. Abul-Husn; Stuart A. Scott; Erwin P. Bottinger; Berta Almoguera; John J. Connolly; Rosetta M. Chiavacci; Hakon Hakonarson; Laura J. Rasmussen-Torvik; Vivian Pan; Stephen D. Persell; Maureen E. Smith; Rex L. Chisholm; Terrie Kitchner; Max M. He
IMPORTANCE Large-scale DNA sequencing identifies incidental rare variants in established Mendelian disease genes, but the frequency of related clinical phenotypes in unselected patient populations is not well established. Phenotype data from electronic medical records (EMRs) may provide a resource to assess the clinical relevance of rare variants. OBJECTIVE To determine the clinical phenotypes from EMRs for individuals with variants designated as pathogenic by expert review in arrhythmia susceptibility genes. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study included 2022 individuals recruited for nonantiarrhythmic drug exposure phenotypes from October 5, 2012, to September 30, 2013, for the Electronic Medical Records and Genomics Network Pharmacogenomics project from 7 US academic medical centers. Variants in SCN5A and KCNH2, disease genes for long QT and Brugada syndromes, were assessed for potential pathogenicity by 3 laboratories with ion channel expertise and by comparison with the ClinVar database. Relevant phenotypes were determined from EMRs, with data available from 2002 (or earlier for some sites) through September 10, 2014. EXPOSURES One or more variants designated as pathogenic in SCN5A or KCNH2. MAIN OUTCOMES AND MEASURES Arrhythmia or electrocardiographic (ECG) phenotypes defined by International Classification of Diseases, Ninth Revision (ICD-9) codes, ECG data, and manual EMR review. RESULTS Among 2022 study participants (median age, 61 years [interquartile range, 56-65 years]; 1118 [55%] female; 1491 [74%] white), a total of 122 rare (minor allele frequency <0.5%) nonsynonymous and splice-site variants in 2 arrhythmia susceptibility genes were identified in 223 individuals (11% of the study cohort). Forty-two variants in 63 participants were designated potentially pathogenic by at least 1 laboratory or ClinVar, with low concordance across laboratories (Cohen κ = 0.26). An ICD-9 code for arrhythmia was found in 11 of 63 (17%) variant carriers vs 264 of 1959 (13%) of those without variants (difference, +4%; 95% CI, -5% to +13%; P = .35). In the 1270 (63%) with ECGs, corrected QT intervals were not different in variant carriers vs those without (median, 429 vs 439 milliseconds; difference, -10 milliseconds; 95% CI, -16 to +3 milliseconds; P = .17). After manual review, 22 of 63 participants (35%) with designated variants had any ECG or arrhythmia phenotype, and only 2 had corrected QT interval longer than 500 milliseconds. CONCLUSIONS AND RELEVANCE Among laboratories experienced in genetic testing for cardiac arrhythmia disorders, there was low concordance in designating SCN5A and KCNH2 variants as pathogenic. In an unselected population, the putatively pathogenic genetic variants were not associated with an abnormal phenotype. These findings raise questions about the implications of notifying patients of incidental genetic findings.
Science | 2016
Noura S. Abul-Husn; Kandamurugu Manickam; Laney K. Jones; Eric A. Wright; Dustin N. Hartzel; Claudia Gonzaga-Jauregui; Colm O’Dushlaine; Joseph B. Leader; H. Lester Kirchner; D’Andra M. Lindbuchler; Marci L Barr; Monica A. Giovanni; Marylyn D. Ritchie; John D. Overton; Jeffrey G. Reid; Raghu Metpally; Amr H. Wardeh; Ingrid B. Borecki; George D. Yancopoulos; Aris Baras; Alan R. Shuldiner; Omri Gottesman; David H. Ledbetter; David J. Carey; Frederick E. Dewey; Michael F. Murray
Unleashing the power of precision medicine Precision medicine promises the ability to identify risks and treat patients on the basis of pathogenic genetic variation. Two studies combined exome sequencing results for over 50,000 people with their electronic health records. Dewey et al. found that ∼3.5% of individuals in their cohort had clinically actionable genetic variants. Many of these variants affected blood lipid levels that could influence cardiovascular health. Abul-Husn et al. extended these findings to investigate the genetics and treatment of familial hypercholesterolemia, a risk factor for cardiovascular disease, within their patient pool. Genetic screening helped identify at-risk patients who could benefit from increased treatment. Science, this issue p. 10.1126/science.aaf6814, p. 10.1126/science.aaf7000 Genomic screening can prompt the diagnosis of familial hypercholesterolemia patients, the majority of whom are receiving inadequate lipid-lowering therapy. INTRODUCTION Familial hypercholesterolemia (FH) is a public health genomics priority but remains underdiagnosed and undertreated despite widespread cholesterol screening. This represents a missed opportunity to prevent FH-associated cardiovascular morbidity and mortality. Pathogenic variants in three genes (LDLR, APOB, and PCSK9) account for the majority of FH cases. We assessed the prevalence and clinical impact of FH-associated genomic variants in 50,726 individuals from the MyCode Community Health Initiative at Geisinger Health System who underwent exome sequencing as part of the DiscovEHR human genetics collaboration with the Regeneron Genetics Center. RATIONALE Genetic testing for FH is uncommon in clinical practice in the United States, and the prevalence of FH variants in U.S. populations has not been well established. We sought to evaluate FH prevalence in a large integrated U.S. health care system using genomic sequencing and electronic health record (EHR) data. We determined the impact of FH variants on low-density lipoprotein cholesterol (LDL-C) levels and coronary artery disease (CAD) risk. We assessed the likelihood of FH variant carriers achieving a presequencing EHR-based FH diagnosis according to established clinical diagnostic criteria. Finally, we examined the rates of statin medication use and outcomes in FH variant carriers. RESULTS Thirty-five known and predicted pathogenic variants in LDLR, APOB, and PCSK9 were identified in 229 individuals. The estimated FH prevalence was 1:256 in unselected participants and 1:118 in participants ascertained via the cardiac catheterization laboratory. FH variants were found in only 2.5% of individuals with severe hypercholesterolemia (maximum EHR-documented LDL-C ≥ 190 mg/dl) in the cohort, and a maximum LDL-C of ≥190 mg/dl was absent in 45% of FH variant carriers. Overall, FH variant carriers had 69 ± 3 mg/dl greater maximum LDL-C than sequenced noncarriers (P = 1.8 × 10−20) and had significantly increased odds of general and premature CAD [odds ratio (OR), 2.6 (P = 4.3 × 10−11) and 3.7 (P = 5.5 × 10−14), respectively]. The increased odds of general and premature CAD were most pronounced in carriers of LDLR predicted loss-of-function variants [OR, 5.5 (P = 7.7 × 10−13) and 10.3 (P = 9.8 × 10−19), respectively]. Fourteen FH variant carriers were deceased; chart review revealed that none of these individuals had a clinical diagnosis of FH. Before genetic testing, only 15% of FH variant carriers had an ICD-10 (International Classification of Diseases, 10th revision) diagnosis code for pure hypercholesterolemia or had been seen in a lipid clinic, suggesting that few had been previously diagnosed with FH. Retrospectively applying Dutch Lipid Clinic Network diagnostic criteria to EHR data, we found presequencing criteria supporting a probable or definite clinical diagnosis of FH in 24% of FH variant carriers, highlighting the limitations of using existing clinical criteria for EHR-based screening in the absence of genetic testing. Active statin use was identified in 58% and high-intensity statin use in 37% of FH variant carriers. Only 46% of carriers currently on statin therapy had a most recent LDL-C level below 100 mg/dl compared to 77% of noncarriers. CONCLUSION In summary, we show that large-scale genomic screening in patients with longitudinal EHR data has the ability to detect FH, uncover and characterize novel pathogenic variants, determine disease prevalence, and enhance overall knowledge of clinical impact and outcomes. The 1:256 prevalence of FH variants in this predominantly European-American cohort is in line with prevalence estimates from recent work in European cohorts. Our findings highlight the undertreatment of FH variant carriers and demonstrate a potential clinical benefit for large-scale sequencing initiatives in service of precision medicine. Prevalence and clinical impact of FH variants in a large U.S. clinical care cohort. (A) Distribution of 229 heterozygous carriers of an FH variant in the DiscovEHR cohort by FH gene. (B) Prevalence of an FH variant in the DiscovEHR cohort and according to recruitment site
The Scientific World Journal | 2007
Raphael Rozenfeld; Noura S. Abul-Husn; Ivone Gomes; Lakshmi A. Devi
Morphine and related opiates are commonly used in the clinical management of various types of pain. However, the antinociceptive properties of morphine are often overshadowed by the development of tolerance and dependence following its chronic use. The mechanisms underlying opiate tolerance are not fully understood, but appear to involve numerous and complex physiological adaptations. Recently, a role for the heterodimerization of mu and delta opioid receptors in the development of morphine tolerance has been proposed. This novel mechanism could help us to understand several observations, such as the critical role of delta opioid receptor regulation, the impact of delta opioid receptor binding site occupancy, and the participation of beta-arrestin2, in the development of morphine tolerance.
Pharmacogenomics and Personalized Medicine | 2014
Noura S. Abul-Husn; Aniwaa Owusu Obeng; Saskia C. Sanderson; Omri Gottesman; Stuart A. Scott
Clinical genetic testing began over 30 years ago with the availability of mutation detection for sickle cell disease diagnosis. Since then, the field has dramatically transformed to include gene sequencing, high-throughput targeted genotyping, prenatal mutation detection, preimplantation genetic diagnosis, population-based carrier screening, and now genome-wide analyses using microarrays and next-generation sequencing. Despite these significant advances in molecular technologies and testing capabilities, clinical genetics laboratories historically have been centered on mutation detection for Mendelian disorders. However, the ongoing identification of deoxyribonucleic acid (DNA) sequence variants associated with common diseases prompted the availability of testing for personal disease risk estimation, and created commercial opportunities for direct-to-consumer genetic testing companies that assay these variants. This germline genetic risk, in conjunction with other clinical, family, and demographic variables, are the key components of the personalized medicine paradigm, which aims to apply personal genomic and other relevant data into a patient’s clinical assessment to more precisely guide medical management. However, genetic testing for disease risk estimation is an ongoing topic of debate, largely due to inconsistencies in the results, concerns over clinical validity and utility, and the variable mode of delivery when returning genetic results to patients in the absence of traditional counseling. A related class of genetic testing with analogous issues of clinical utility and acceptance is pharmacogenetic testing, which interrogates sequence variants implicated in interindividual drug response variability. Although clinical pharmacogenetic testing has not previously been widely adopted, advances in rapid turnaround time genetic testing technology and the recent implementation of preemptive genotyping programs at selected medical centers suggest that personalized medicine through pharmacogenetics is now a reality. This review aims to summarize the current state of implementing genetic testing for personalized medicine, with an emphasis on clinical pharmacogenetic testing.
Proteomics | 2009
Noura S. Abul-Husn; Ittai Bushlin; José A. Morón; Sherry L. Jenkins; Georgia Dolios; Rong Wang; Ravi Iyengar; Avi Ma'ayan; Lakshmi A. Devi
The application of proteomic techniques to neuroscientific research provides an opportunity for a greater understanding of nervous system structure and function. As increasing amounts of neuroproteomic data become available, it is necessary to formulate methods to integrate these data in a meaningful way to obtain a more comprehensive picture of neuronal subcompartments. Furthermore, computational methods can be used to make biologically relevant predictions from large proteomic data sets. Here, we applied an integrated proteomics and systems biology approach to characterize the presynaptic (PRE) nerve terminal. For this, we carried out proteomic analyses of presynaptically enriched fractions, and generated a PRE literature‐based protein–protein interaction network. We combined these with other proteomic analyses to generate a core list of 117 PRE proteins, and used graph theory‐inspired algorithms to predict 92 additional components and a PRE complex containing 17 proteins. Some of these predictions were validated experimentally, indicating that the computational analyses can identify novel proteins and complexes in a subcellular compartment. We conclude that the combination of techniques (proteomics, data integration, and computational analyses) used in this study are useful in obtaining a comprehensive understanding of functional components, especially low‐abundance entities and/or interactions in the PRE nerve terminal.
Journal of Pharmacology and Experimental Therapeutics | 2006
Noura S. Abul-Husn; Lakshmi A. Devi
Proteomic analyses of brain tissues are becoming an integral component of neuroscientific research. In particular, the essential role of the synapse in neurotransmission and plasticity has brought about extensive efforts to identify its protein constituents. Recent studies have used a combination of subcellular fractionation and proteomic techniques to identify proteins associated with different components of the synapse. Thus, a coherent map of the synapse proteome is rapidly emerging, and a timely review of these data is warranted. In the first part of this review, neuroproteomic techniques that have been used to analyze the synapse proteome are described. We then summarize the results from several recent proteomic analyses of mammalian synapses and discuss the similarities and differences in their profiling of synaptic proteins. Important advances in this field of research include the use of proteomics to analyze synaptic function and drug effects on synaptic proteins. This article presents an overview of proteomic analyses of the phosphorylation states of synaptic proteins and recent applications of neuroproteomic techniques to the study of drug addiction. Finally, we discuss the challenges in comparing proteomic studies of drug addiction and the future directions of this field in furthering our understanding of the molecular mechanisms underlying synaptic function and drug addiction.
BMC Systems Biology | 2009
Avi Ma'ayan; Sherry L. Jenkins; Ryan L Webb; Seth I. Berger; Sudarshan P. Purushothaman; Noura S. Abul-Husn; Jeremy M Posner; Tony Flores; Ravi Iyengar
BackgroundStudies of cellular signaling indicate that signal transduction pathways combine to form large networks of interactions. Viewing protein-protein and ligand-protein interactions as graphs (networks), where biomolecules are represented as nodes and their interactions are represented as links, is a promising approach for integrating experimental results from different sources to achieve a systematic understanding of the molecular mechanisms driving cell phenotype. The emergence of large-scale signaling networks provides an opportunity for topological statistical analysis while visualization of such networks represents a challenge.ResultsSNAVI is Windows-based desktop application that implements standard network analysis methods to compute the clustering, connectivity distribution, and detection of network motifs, as well as provides means to visualize networks and network motifs. SNAVI is capable of generating linked web pages from network datasets loaded in text format. SNAVI can also create networks from lists of gene or protein names.ConclusionSNAVI is a useful tool for analyzing, visualizing and sharing cell signaling data. SNAVI is open source free software. The installation may be downloaded from: http://snavi.googlecode.com. The source code can be accessed from: http://snavi.googlecode.com/svn/trunk
Journal of Personalized Medicine | 2014
Casey Lynnette Overby; Angelika Ludtke Erwin; Noura S. Abul-Husn; Stephen Ellis; Stuart A. Scott; Aniwaa Owusu Obeng; Joseph Kannry; George Hripcsak; Erwin P. Bottinger; Omri Gottesman
This study assessed physician attitudes toward adopting genome-guided prescribing through clinical decision support (CDS), prior to enlisting in the Clinical Implementation of Personalized Medicine through Electronic Health Records and Genomics pilot pharmacogenomics project (CLIPMERGE PGx). We developed a survey instrument that includes the Evidence Based Practice Attitude Scale, adapted to measure attitudes toward adopting genome-informed interventions (EBPAS-GII). The survey also includes items to measure physicians’ characteristics (awareness, experience, and perceived usefulness), attitudes about personal genome testing (PGT) services, and comfort using technology. We surveyed 101 General Internal Medicine physicians from the Icahn School of Medicine at Mount Sinai (ISMMS). The majority were residency program trainees (~88%). Prior to enlisting into CLIPMERGE PGx, most physicians were aware of and had used decision support aids. Few physicians, however, were aware of and had used genome-guided prescribing. The majority of physicians viewed decision support aids and genotype data as being useful for making prescribing decisions. Most physicians had not heard of, but were willing to use, PGT services and felt comfortable interpreting PGT results. Most physicians were comfortable with technology. Physicians who perceived genotype data to be useful in making prescribing decisions, had more positive attitudes toward adopting genome-guided prescribing through CDS. Our findings suggest that internal medicine physicians have a deficit in their familiarity and comfort interpreting and using genomic information. This has reinforced the importance of gathering feedback and guidance from our enrolled physicians when designing genome-guided CDS and the importance of prioritizing genomic medicine education at our institutions.