Nozomi Hamasaki
Juntendo University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nozomi Hamasaki.
American Journal of Neuroradiology | 2017
Akifumi Hagiwara; Masaaki Hori; Kazumasa Yokoyama; M.Y. Takemura; Christina Andica; T. Tabata; K. Kamagata; Masaru Suzuki; Kanako K. Kumamaru; Misaki Nakazawa; N. Takano; H. Kawasaki; Nozomi Hamasaki; Akira Kunimatsu; Shigeki Aoki
In this retrospective study, synthetic T2-weighted, FLAIR, double inversion recovery, and phase-sensitive inversion recovery images were produced in 12 patients with MS after quantification of T1 and T2 values and proton density. Double inversion recovery images were optimized for each patient by adjusting the TI. The number of visible plaques was determined by a radiologist for a set of these 4 types of synthetic MR images and a set of conventional T1-weighted inversion recovery, T2-weighted, and FLAIR images. Conventional 3D double inversion recovery and other available images were used as the criterion standard. Synthetic MR imaging enabled detection of more MS plaques than conventional MR imaging in a comparable acquisition time (approximately 7 minutes). The contrast for MS plaques on synthetic double inversion recovery images was better than on conventional double inversion recovery images. BACKGROUND AND PURPOSE: Synthetic MR imaging enables the creation of various contrast-weighted images including double inversion recovery and phase-sensitive inversion recovery from a single MR imaging quantification scan. Here, we assessed whether synthetic MR imaging is suitable for detecting MS plaques. MATERIALS AND METHODS: Quantitative and conventional MR imaging data on 12 patients with MS were retrospectively analyzed. Synthetic T2-weighted, FLAIR, double inversion recovery, and phase-sensitive inversion recovery images were produced after quantification of T1 and T2 values and proton density. Double inversion recovery images were optimized for each patient by adjusting the TI. The number of visible plaques was determined by a radiologist for a set of these 4 types of synthetic MR images and a set of conventional T1-weighted inversion recovery, T2-weighted, and FLAIR images. Conventional 3D double inversion recovery and other available images were used as the criterion standard. The total acquisition time of synthetic MR imaging was 7 minutes 12 seconds and that of conventional MR imaging was 6 minutes 29 seconds The lesion-to-WM contrast and lesion-to-WM contrast-to-noise ratio were calculated and compared between synthetic and conventional double inversion recovery images. RESULTS: The total plaques detected by synthetic and conventional MR images were 157 and 139, respectively (P = .014). The lesion-to-WM contrast and contrast-to-noise ratio on synthetic double inversion recovery images were superior to those on conventional double inversion recovery images (P = .001 and < 0.001, respectively). CONCLUSIONS: Synthetic MR imaging enabled detection of more MS plaques than conventional MR imaging in a comparable acquisition time. The contrast for MS plaques on synthetic double inversion recovery images was better than on conventional double inversion recovery images.
American Journal of Neuroradiology | 2017
Akifumi Hagiwara; Masaaki Hori; Kazumasa Yokoyama; M.Y. Takemura; Christina Andica; Kanako K. Kumamaru; Misaki Nakazawa; N. Takano; H. Kawasaki; Shuji Sato; Nozomi Hamasaki; Akira Kunimatsu; Shigeki Aoki
BACKGROUND AND PURPOSE: T1 and T2 values and proton density can now be quantified on the basis of a single MR acquisition. The myelin and edema in a voxel can also be estimated from these values. The purpose of this study was to evaluate a multiparametric quantitative MR imaging model that assesses myelin and edema for characterizing plaques, periplaque white matter, and normal-appearing white matter in patients with MS. MATERIALS AND METHODS: We examined 3T quantitative MR imaging data from 21 patients with MS. The myelin partial volume, excess parenchymal water partial volume, the inverse of T1 and transverse T2 relaxation times (R1, R2), and proton density were compared among plaques, periplaque white matter, and normal-appearing white matter. RESULTS: All metrics differed significantly across the 3 groups (P < .001). Those in plaques differed most from those in normal-appearing white matter. The percentage changes of the metrics in plaques and periplaque white matter relative to normal-appearing white matter were significantly more different from zero for myelin partial volume (mean, −61.59 ± 20.28% [plaque relative to normal-appearing white matter], and mean, −10.51 ± 11.41% [periplaque white matter relative to normal-appearing white matter]), and excess parenchymal water partial volume (13.82 × 103 ± 49.47 × 103% and 51.33 × 102 ± 155.31 × 102%) than for R1 (−35.23 ± 13.93% and −6.08 ± 8.66%), R2 (−21.06 ± 11.39% and −4.79 ± 6.79%), and proton density (23.37 ± 10.30% and 3.37 ± 4.24%). CONCLUSIONS: Multiparametric quantitative MR imaging captures white matter damage in MS. Myelin partial volume and excess parenchymal water partial volume are more sensitive to the MS disease process than R1, R2, and proton density.
Acta radiologica short reports | 2016
Akifumi Hagiwara; Masaaki Hori; Michimasa Suzuki; Christina Andica; Misaki Nakazawa; Kouhei Tsuruta; N. Takano; Shuji Sato; Nozomi Hamasaki; Mariko Yoshida; Kanako K. Kumamaru; Kuni Ohtomo; Shigeki Aoki
Background Synthetic magnetic resonance imaging (MRI), a technique that enables creation of various contrast-weighted images from a single MRI quantification scan, is a useful clinical tool. However, there are currently no reports examining the use of contrast-enhanced synthetic MRI for detecting brain metastases. Purpose To assess whether contrast-enhanced synthetic MRI is suitable for detecting brain metastases. Material and Methods Ten patients with a combined total of 167 brain metastases who underwent quantitative MRI and conventional T1-weighted inversion recovery fast spin-echo (conventional T1IR) MRI before and after administration of a contrast agent were included in the study. Synthetic T1IR and T1-weighted (synthetic T1W) images were produced after parameter quantification. Lesion-to-white matter contrast and contrast-to-noise ratio were calculated for each image. The number of visible lesions in each image was determined by two neuroradiologists. Results The mean lesion-to-white matter contrast and mean contrast-to-noise ratio of the synthetic T1IR images were significantly higher than those of the synthetic T1W (P < 0.001 and P < 0.001, respectively) and conventional T1IR (P = 0.04 and P = 0.002, respectively) images. Totals of 130 and 124 metastases were detected in the synthetic T1IR images by the first and second radiologists, respectively. The corresponding numbers were 91 and 85 in the synthetic T1W images and 119 and 119 in the conventional T1IR images. Statistical significance was not found among detected numbers of lesions. Conclusion Synthetic T1IR imaging created better contrast compared with synthetic T1W or conventional T1IR imaging. The ability to detect brain metastases was comparable among these imaging.
Magnetic Resonance Imaging | 2014
Masaaki Hori; Mariko Yoshida; Kazumasa Yokoyama; Koji Kamagata; Fumitaka Kumagai; Issei Fukunaga; Kouhei Kamiya; Michimasa Suzuki; Yoshitaka Masutani; Nozomi Hamasaki; Yuriko Suzuki; Shinsuke Kyogoku; Nobutaka Hattori; Shigeki Aoki
INTRODUCTION Diffusion tensor imaging (DTI) reveals white matter pathology in patients with multiple sclerosis (MS). A recent non-Gaussian diffusion imaging technique, q-space imaging (QSI), may provide several advantages over conventional MRI techniques in regard to in vivo evaluation of the disease process in patients with MS. The purpose of this study is to investigate the use of root mean square displacement (RMSD) derived from QSI data to characterize plaques, periplaque white matter (PWM), and normal-appearing white matter (NAWM) in patients with MS. METHODS We generated apparent diffusion coefficient (ADC) and fractional anisotropy (FA) maps by using conventional DTI data from 21 MS patients; we generated RMSD maps by using QSI data from these patients. We used the Steel-Dwass test to compare the diffusion metrics of regions of interest in plaques, PWM, and NAWM. RESULTS ADC differed (P<0.05) between plaques and PWM and between plaques and NAWM. FA differed (P<0.05) between plaques and NAWM. RMSD differed (P<0.05) between plaques and PWM, plaques and NAWM, and PWM and NAWM. CONCLUSION RMSD values from QSI may reflect microstructural changes and white-matter damage in patients with MS with higher sensitivity than do conventional ADC and FA values.
American Journal of Neuroradiology | 2016
N. Takano; Michimasa Suzuki; Ryusuke Irie; Munetaka Yamamoto; Nozomi Hamasaki; Koji Kamagata; Kanako K. Kumamaru; Masaaki Hori; Hidenori Oishi; Shigeki Aoki
BACKGROUND AND PURPOSE: Y-configuration stent-assisted coil embolization is used for treating wide-neck aneurysms. Noninvasive alternatives to x-ray DSA for follow-up after Y-configuration stent-assisted coil embolization treatment are required. This study aimed to assess the usefulness of non–contrast-enhanced MRA by using a Silent Scan (silent MRA) for follow-up after Y-configuration stent-assisted coil embolization for basilar tip aneurysms. MATERIALS AND METHODS: Seven patients treated with Y-configuration stent-assisted coil embolization for basilar tip aneurysms underwent silent MRA, 3D TOF-MRA, and DSA. Silent MRA and 3D TOF-MRA images were obtained during the same scan session on a 3T MR imaging system. Two neuroradiologists independently reviewed both types of MRA images and subjectively scored the flow in the stents on a scale of 1 (not visible) to 5 (nearly equal to DSA) by referring to the latest DSA image as a criterion standard. Furthermore, we evaluated the visualization of the neck remnant. RESULTS: In all patients, the 2 observers gave a higher score for the flow in the stents on silent MRA than on 3D TOF-MRA. The average score ± standard deviation was 4.07 ± 0.70 for silent MRA and 1.93 ± 0.80 (P < .05) for 3D TOF-MRA. Neck remnants were depicted by DSA in 5 patients. In silent MRA, neck remnants were depicted in 5 patients, and visualization was similar to DSA; however, in 3D TOF-MRA, neck remnants were depicted in only 1 patient. CONCLUSIONS: Silent MRA might be useful for follow-up after Y-configuration stent-assisted coil embolization.
Magnetic Resonance Imaging | 2017
Mariko Yoshida Takemura; Masaaki Hori; Kazumasa Yokoyama; Nozomi Hamasaki; Michimasa Suzuki; Koji Kamagata; Kouhei Kamiya; Yuriko Suzuki; Shinsuke Kyogoku; Yoshitaka Masutani; Nobutaka Hattori; Shigeki Aoki
OBJECTIVES We investigated changes in the optic tract and optic radiation in patients with multiple sclerosis (MS) by comparing unilateral and bilateral optic nerve damage assessed based on visual evoked potentials (VEPs) using advanced diffusion MR metrics. METHODS In 21 MS patients, diffusion MRI was performed. Maps of fractional anisotropy, apparent diffusion coefficient (ADC), and mean kurtosis (MK) were computed. On the basis of the P100 latency in VEPs, the MS patients were divided into three groups: bilateral (n=7), unilateral (n=7), and no abnormality (n=7). Their optic tracts and optic radiations were analyzed with diffusion MRI-based fiber tracking. We also investigated the correlations between diffusion parameters and VEPs (n=21). RESULTS In the optic tract, the diffusion changes in each of the three groups showed step-like changes. The diffusion changes in the optic radiations of the unilateral group were similar to those in the normal VEP group. Only the bilateral group showed significantly higher ADC and lower MK relative to the other two groups (P<0.05, Steel-Dwass multiple-comparison test). A significant positive correlation between VEP latency and ADC and a significant negative correlation between VEP latency and MK were observed (P<0.01, Spearmans correction). CONCLUSIONS We first evaluated the relationship between VEPs and DKI and concluded that the lateral geniculate nucleus may compensate for unilateral damage in the pre-geniculate optic pathway via neural plasticity.
Acta radiologica short reports | 2012
Kouichi Asahi; Masaaki Hori; Nozomi Hamasaki; Shuji Sato; H Nakanishi; Ryohei Kuwatsuru; K Sasai; Shigeki Aoki
Background It is difficult to non-invasively visualize changes in regional cerebral blood flow caused by manual compression of the carotid artery. Purpose To visualize dynamic changes in regional cerebral blood flow during and after manual compression of the carotid artery. Material and Methods Two healthy volunteers were recruited. Anatomic features and flow directions in the circle of Willis were evaluated with time-of-flight magnetic resonance angiography (MRA) and two-dimensional phase-contrast (2DPC) MRA, respectively. Regional cerebral blood flow was visualized with territorial arterial spin-labeling magnetic resonance imaging (TASL-MRI). TASL-MRI and 2DPC-MRA were performed in three states: at rest, during manual compression of the right carotid artery, and after decompression. In one volunteer, time-space labeling inversion pulse (Time-SLIP) MRA was performed to confirm collateral flow. Results During manual carotid compression, in one volunteer, the right thalamus changed to be fed only by the vertebrobasilar system, and the right basal ganglia changed to be fed by the left internal carotid artery. In the other volunteer, the right basal ganglia changed to be fed by the vertebrobasilar system. 2DPC-MRA showed that the flow direction changed in the right A1 segment of the anterior cerebral artery and the right posterior communicating artery. Perfusion patterns and flow directions recovered after decompression. Time-SLIP MRA showed pial vessels and dural collateral circulation when the right carotid artery was manually compressed. Conclusion Use of TASL-MRI and 2DPC-MRA was successful for non-invasive visualization of the dynamic changes in regional cerebral blood flow during and after manual carotid compression.
Magnetic Resonance in Medical Sciences | 2017
Christina Andica; Masaaki Hori; Kouhei Kamiya; Saori Koshino; Akifumi Hagiwara; Koji Kamagata; Issei Fukunaga; Nozomi Hamasaki; Michimasa Suzuki; Thorsten Feiweier; Katsutoshi Murata; Atsushi Arakawa; Kondo Akihide; Osamu Akiyama; Shigeki Aoki
We report two cases of pathologically proven intracranial epidermoid cysts. Both cases were scanned with diffusion-weighted imaging using pulsed gradient spin-echo (PGSE) and oscillating gradient spin-echo (OGSE; 50 Hz) prototype sequences with diffusion times of 47.3 ms and 8.5 ms, respectively. The apparent diffusion coefficient measured by OGSE was higher than that measured by PGSE, indicating the spatial restriction of water diffusion in the laminated keratin layers within the cyst as demonstrated by histopathology.
American Journal of Neuroradiology | 2017
N. Takano; Masaru Suzuki; Ryusuke Irie; Munetaka Yamamoto; K. Teranishi; K. Yatomi; Nozomi Hamasaki; Kanako K. Kumamaru; Masaaki Hori; Hidenori Oishi; Shigeki Aoki
BACKGROUND AND PURPOSE: The Low-Profile Visualized Intraluminal Support Device comprises a small-cell nitinol structure and a single-wire braided stent that provides greater metal coverage than previously reported intracranial stents, as well as assumed strong susceptibility artifacts. This study aimed to assess the benefits of non-contrast-enhanced MRA by using a Silent Scan (Silent MRA) for intracranial anterior circulation aneurysms treated with Low-Profile Visualized Intraluminal Support Device stents. MATERIALS AND METHODS: Thirty-one aneurysms treated with Low-Profile Visualized Intraluminal Support Device stents were assessed by using Silent MRA, 3D TOF-MRA, and x-ray DSA. The quality of MRA visualization of the reconstructed artery was graded on a 4-point scale from 1 (not visible) to 4 (excellent). Aneurysm occlusion status was evaluated by using a 2-grade scale (total occlusion/remnant [neck or aneurysm]). Weighted κ statistics were used to evaluate interobserver and intermodality agreement. RESULTS: The mean scores ± SDs for Silent MRA and 3D TOF-MRA were 3.16 ± 0.79 and 1.48 ± 0.67 (P < .05), respectively, with substantial interobserver agreement (κ = 0.66). The aneurysm occlusion rates of the 2-grade scale (total occlusion/remnant [neck or aneurysm]) were 69%/31% for DSA, 65%/35% for Silent MRA, and 92%/8% for 3D TOF-MRA, respectively. The intermodality agreements were 0.88 and 0.30 for DSA/Silent MRA and DSA/3D TOF-MRA, respectively. CONCLUSIONS: Silent MRA seems to be useful for visualizing intracranial anterior circulation aneurysms treated with Low-Profile Visualized Intraluminal Support Device stents.
Scientific Reports | 2018
Masaaki Hori; Akifumi Hagiwara; Issei Fukunaga; Ryo Ueda; Kouhei Kamiya; Yuichi Suzuki; Wei Liu; Katsutoshi Murata; Tomohiro Takamura; Nozomi Hamasaki; Ryusuke Irie; Koji Kamagata; Kanako K. Kumamaru; Michimasa Suzuki; Shigeki Aoki
Mapping of MR fiber g-ratio, which is the ratio of the diameter of the axon to the diameter of the neuronal fiber, is introduced in this article. We investigated the MR fiber g-ratio, the axon volume fraction (AVF) and the myelin volume fraction (MVF) to evaluate microstructural changes in the spinal cord in patients with cervical spondylotic myelopathy (CSM) in vivo, using atlas-based analysis. We used diffusion MRI data acquired with a new simultaneous multi-slice accelerated readout-segmented echo planar imaging sequence for diffusion analysis for AVF calculation and magnetization transfer saturation imaging for MVF calculation. The AVFs of fasciculus gracilis in the affected side spinal cord, fasciculus cuneatus and lateral corticospinal tracts (LSCT) in the affected and unaffected side spinal cord were significantly lower (P = 0.019, 0.001, 0019, 0.000, and 0.002, respectively) than those of normal controls. No difference was found in the MVFs. The fiber g-ratio of LSCT was significantly lower (P = 0.040) in the affected side spinal cords than in the normal controls. The pathological microstructural changes in the spinal cord in patients with CSM, presumably partial axonal degenerations with preserved myelin. This technique has the potential to be a clinical biomarker in patients with CSM in vivo.