Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nozomi Tsutsui is active.

Publication


Featured researches published by Nozomi Tsutsui.


Journal of Organic Chemistry | 2008

Samarium(II)-Mediated Spirocyclization by Intramolecular Aryl Radical Addition onto an Aromatic Ring

Hiroki Iwasaki; Toru Eguchi; Nozomi Tsutsui; Hiroaki Ohno; Tetsuaki Tanaka

Samarium(II)-mediated spirocyclization by intramolecular addition of aryl radicals onto an aromatic ring was achieved by the reaction of N-(2-iodophenyl)-N-alkylbenzamides with SmI2 in the presence of HMPA, yielding spirocyclic indolin-2-one derivatives. The ether congeners afford spirocyclic benzofuran derivatives in moderate yields by aryl radical addition onto a benzene ring without having an electron-withdrawing group. The reaction with other aryl groups such as naphthalene and indole rings is also described.


Bioorganic & Medicinal Chemistry Letters | 2012

Acremomannolipin A, the potential calcium signal modulator with a characteristic glycolipid structure from the filamentous fungus Acremonium strictum

Reiko Sugiura; Ayako Kita; Nozomi Tsutsui; Osamu Muraoka; Kanako Hagihara; Nanae Umeda; Tatsuki Kunoh; Hirofumi Takada; Dai Hirose

By the newly developed assay method, the glycolipid Acremomannolipin A (1) was isolated from a filamentous fungus Acremonium strictum as a potential calcium signal modulator. The structure of 1 elucidated on the basis of intensive spectroscopic analyses as well as its degradation studies is quite unique: the d-mannopyranose is connected to d-mannitol through a β-glycoside linkage; all the hydroxyls in the mannose are highly masked as peresters with aliphatic acids, and this moiety is made hydrophobic, whereas the mannitol part exhibits a highly hydrophilic property. The compound (1) showed the characteristic bioactivity property, enabling calcineurin deletion cells to grow in the presence of Cl(-), which would be caused by calcium signal modulating. The activity was so potent as to exert the effect at a concentration of 200 nM.


Journal of Natural Products | 2015

Total Synthesis of 4,5-Didehydroguadiscine: A Potent Melanogenesis Inhibitor from the Brazilian Medicinal Herb, Hornschuchia obliqua

Genzoh Tanabe; Youta Sugano; Miki Shirato; Naoki Sonoda; Nozomi Tsutsui; Toshio Morikawa; Kiyofumi Ninomiya; Masayuki Yoshikawa; Osamu Muraoka

The first total synthesis of the 7,7-dimethylaporphinoid, 4,5-didehydroguadiscine (6), originally isolated from the stems and roots of Hornschuchia oblique (Annonaceae), was achieved by the condensation of homopiperonylamine (7) with an α,α-dimethylphenylacetic acid derivative (8) and subsequent Pschorr reaction of the resulting benzylisoquinoline intermediate (22). The reported (13)C NMR data were partially revised on the basis of the analysis of HMBC spectra measured under different conditions. The melanogenesis inhibitory activity (IC50 = 4.7 μM) of 6 was 40 times stronger than that of arbutin (174 μM), which was used as reference standard. Furthermore, 6 was the most potent natural melanogenesis inhibitor within this class of compounds.


Bioorganic & Medicinal Chemistry | 2014

Structure–activity relationship studies on acremomannolipin A, the potent calcium signal modulator with a novel glycolipid structure 2: Role of the alditol side chain stereochemistry

Nozomi Tsutsui; Genzoh Tanabe; Genki Gotoh; Nao Morita; Naohisa Nomura; Ayako Kita; Reiko Sugiura; Osamu Muraoka

Five alditol analogs 1b-1f of a novel glycolipid acremomannolipin A (1a), the potential Ca(2+) signal modulator isolated from Acremonium strictum, were synthesized by employing a stereoselective β-mannosylation of appropriately protected mannose with five hexitols with different stereochemistry, and their potential on modulating Ca(2+) signaling were evaluated. All these analogs were more potent compared to the original compound 1a, and proved that mannitol stereochemistry of 1a was not critical for the potent calcium signal modulating.


Bioorganic & Medicinal Chemistry | 2015

Structure-activity relationship studies on acremomannolipin A, the potent calcium signal modulator with a novel glycolipid structure 3: role of the length of alditol side chain.

Nozomi Tsutsui; Genzoh Tanabe; Nao Morita; Yoshitomo Okayama; Ayako Kita; Reiko Sugiura; Osamu Muraoka

Five homologs of a novel glycolipid acremomannolipin A (1a), the potential Ca(2+) signal modulator isolated from Acremonium strictum, bearing alditols of different length (1g-1k) were synthesized by a stereoselective β-mannosylation of appropriately protected mannosyl sulfoxide (2) with five alditols (1g: C2, 1h: C3, 1i: C4, 1j: C5 and 1k: C7 units), and their potential in modulating Ca(2+) signaling were evaluated. Homologs with alditols of more than 4 carbons (1i, 1j and 1k) were equally or more potent than the parent compound (1a) regardless of the length of the alditol chain. Whereas activities of two homologs with shorter chains (1g and 1h) decreased to a considerable extent. The results indicated that the length of the alditol side chain was a crucial determinant for the potent calcium signal modulating activity.


Chinese Journal of Natural Medicines | 2013

Total synthesis of neokotalanol, a potent α-glucosidase inhibitor isolated from Salacia reticulata.

Weijia Xie; Genzoh Tanabe; Nozomi Tsutsui; Xiao-Ming Wu; Osamu Muraoka

Neokotalanol, a potent α-glucosidase inhibitor isolated from Salacia reticulata, was synthesized through a key coupling reaction between a perbenzylated thiosugar and an appropriately protected perseitol triflate derived from D-mannose. This key step was found to be quite temperature dependent, and a simultaneous cyclization of the triflate leading to a characteristic 2,4,7-trioxabicyclo[4.2.1]nonane system was detected.


European Journal of Medicinal Chemistry | 2016

Structure-activity relationship studies on acremomannolipin A, the potent calcium signal modulator with a novel glycolipid structure 4: Role of acyl side chains on d-mannose.

Nozomi Tsutsui; Genzoh Tanabe; Nami Ikeda; Saika Okamura; Marika Ogawa; Kuniko Miyazaki; Ayako Kita; Reiko Sugiura; Osamu Muraoka

As part of an ongoing study on the structure-activity relationship of acremomannolipin A (1)-the novel glycolipid isolated from Acremonium strictum possessing potent calcium signal-modulating activity-the role of acyl substituents on the d-mannose moiety was examined. Three partially deacylated homologs (2a-2c) and 20 homologs (2d-2w) bearing different acyloxy side chains were synthesized via the stereoselective β-mannosylation of appropriately protected mannosyl sulfoxides (3) with d-mannitol derivatives (4), and their calcium signal-modulating activities were examined. The activities of 2a-2c were completely lost. Homologs bearing relatively short acyloxy groups at C-3, C-4, and C-6 positions (2t-2v) exhibited less activity than 1, whereas a heptanoyl homolog (2w: C7) maintained activity nearly equal to that of 1. When the acyl groups at these three positions were substituted by an octanoyl group (2i: C8), the activity was completely lost. On the other hand, of the 10 homologs in which the octanoyl at C-2 was substituted by other acyloxy moieties (2j-2s), three (2m: C7, 2n: C9, 2o: C10) maintained potent activity. These results suggested that peracylated mannose structure is critical for calcium signal-modulating activity, and this activity is precisely dependent on the length of four acyl side chains on d-mannose.


Tetrahedron Letters | 2013

The first total synthesis of acremomannolipin A, the potential Ca2+ signal modulator with a characteristic glycolipid structure, isolated from the filamentous fungus Acremonium strictum

Nozomi Tsutsui; Genzoh Tanabe; Ayako Kita; Reiko Sugiura; Osamu Muraoka


Chemical Communications | 2012

In silico design, synthesis and evaluation of 3′-O-benzylated analogs of salacinol, a potent α-glucosidase inhibitor isolated from an Ayurvedic traditional medicine “Salacia”

Genzoh Tanabe; Shinya Nakamura; Nozomi Tsutsui; Gorre Balakishan; Weijia Xie; Satoshi Tsuchiya; Junji Akaki; Toshio Morikawa; Kiyofumi Ninomiya; Isao Nakanishi; Masayuki Yoshikawa; Osamu Muraoka


Tetrahedron | 2013

Stereoselective total synthesis of acremomannolipin A and its anomer, the potent calcium signal modulators with a novel glycolipid structure: role of the stereochemistry at the anomeric center on the activity

Nozomi Tsutsui; Genzoh Tanabe; Genki Gotoh; Ayako Kita; Reiko Sugiura; Osamu Muraoka

Collaboration


Dive into the Nozomi Tsutsui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge