Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nozomu Yachie is active.

Publication


Featured researches published by Nozomu Yachie.


Cell | 2015

Widespread Macromolecular Interaction Perturbations in Human Genetic Disorders

Nidhi Sahni; Song Yi; Mikko Taipale; Juan I. Fuxman Bass; Jasmin Coulombe-Huntington; Fan Yang; Jian Peng; Jochen Weile; Georgios I. Karras; Yang Wang; István A. Kovács; Atanas Kamburov; Irina Krykbaeva; Mandy H. Y. Lam; George Tucker; Vikram Khurana; Amitabh Sharma; Yang Yu Liu; Nozomu Yachie; Quan Zhong; Yun Shen; Alexandre Palagi; Adriana San-Miguel; Changyu Fan; Dawit Balcha; Amélie Dricot; Daniel M. Jordan; Jennifer M. Walsh; Akash A. Shah; Xinping Yang

How disease-associated mutations impair protein activities in the context of biological networks remains mostly undetermined. Although a few renowned alleles are well characterized, functional information is missing for over 100,000 disease-associated variants. Here we functionally profile several thousand missense mutations across a spectrum of Mendelian disorders using various interaction assays. The majority of disease-associated alleles exhibit wild-type chaperone binding profiles, suggesting they preserve protein folding or stability. While common variants from healthy individuals rarely affect interactions, two-thirds of disease-associated alleles perturb protein-protein interactions, with half corresponding to edgetic alleles affecting only a subset of interactions while leaving most other interactions unperturbed. With transcription factors, many alleles that leave protein-protein interactions intact affect DNA binding. Different mutations in the same gene leading to different interaction profiles often result in distinct disease phenotypes. Thus disease-associated alleles that perturb distinct protein activities rather than grossly affecting folding and stability are relatively widespread.


PLOS Computational Biology | 2011

Integrative features of the yeast phosphoproteome and protein-protein interaction map.

Nozomu Yachie; Rintaro Saito; Naoyuki Sugiyama; Masaru Tomita; Yasushi Ishihama

Following recent advances in high-throughput mass spectrometry (MS)–based proteomics, the numbers of identified phosphoproteins and their phosphosites have greatly increased in a wide variety of organisms. Although a critical role of phosphorylation is control of protein signaling, our understanding of the phosphoproteome remains limited. Here, we report unexpected, large-scale connections revealed between the phosphoproteome and protein interactome by integrative data-mining of yeast multi-omics data. First, new phosphoproteome data on yeast cells were obtained by MS-based proteomics and unified with publicly available yeast phosphoproteome data. This revealed that nearly 60% of ∼6,000 yeast genes encode phosphoproteins. We mapped these unified phosphoproteome data on a yeast protein–protein interaction (PPI) network with other yeast multi-omics datasets containing information about proteome abundance, proteome disorders, literature-derived signaling reactomes, and in vitro substratomes of kinases. In the phospho-PPI, phosphoproteins had more interacting partners than nonphosphoproteins, implying that a large fraction of intracellular protein interaction patterns (including those of protein complex formation) is affected by reversible and alternative phosphorylation reactions. Although highly abundant or unstructured proteins have a high chance of both interacting with other proteins and being phosphorylated within cells, the difference between the number counts of interacting partners of phosphoproteins and nonphosphoproteins was significant independently of protein abundance and disorder level. Moreover, analysis of the phospho-PPI and yeast signaling reactome data suggested that co-phosphorylation of interacting proteins by single kinases is common within cells. These multi-omics analyses illuminate how wide-ranging intracellular phosphorylation events and the diversity of physical protein interactions are largely affected by each other.


Molecular Systems Biology | 2016

Pooled-matrix protein interaction screens using Barcode Fusion Genetics

Nozomu Yachie; Evangelia Petsalaki; Joseph C. Mellor; Jochen Weile; Yves Jacob; Marta Verby; Sedide B. Ozturk; Siyang Li; Roberto Mosca; Jennifer Knapp; Minjeong Ko; Analyn Yu; Marinella Gebbia; Nidhi Sahni; Song Yi; Tanya Tyagi; Dayag Sheykhkarimli; Jonathan F. Roth; Cassandra Wong; Louai Musa; Jamie Snider; Yi Chun Liu; Haiyuan Yu; Pascal Braun; Igor Stagljar; Tong Hao; Michael A. Calderwood; Laurence Pelletier; Patrick Aloy; David E. Hill

High‐throughput binary protein interaction mapping is continuing to extend our understanding of cellular function and disease mechanisms. However, we remain one or two orders of magnitude away from a complete interaction map for humans and other major model organisms. Completion will require screening at substantially larger scales with many complementary assays, requiring further efficiency gains in proteome‐scale interaction mapping. Here, we report Barcode Fusion Genetics‐Yeast Two‐Hybrid (BFG‐Y2H), by which a full matrix of protein pairs can be screened in a single multiplexed strain pool. BFG‐Y2H uses Cre recombination to fuse DNA barcodes from distinct plasmids, generating chimeric protein‐pair barcodes that can be quantified via next‐generation sequencing. We applied BFG‐Y2H to four different matrices ranging in scale from ~25 K to 2.5 M protein pairs. The results show that BFG‐Y2H increases the efficiency of protein matrix screening, with quality that is on par with state‐of‐the‐art Y2H methods.


BMC Bioinformatics | 2010

Towards the systematic discovery of signal transduction networks using phosphorylation dynamics data

Haruna Imamura; Nozomu Yachie; Rintaro Saito; Yasushi Ishihama; Masaru Tomita

BackgroundPhosphorylation is a ubiquitous and fundamental regulatory mechanism that controls signal transduction in living cells. The number of identified phosphoproteins and their phosphosites is rapidly increasing as a result of recent mass spectrometry-based approaches.ResultsWe analyzed time-course phosphoproteome data obtained previously by liquid chromatography mass spectrometry with the stable isotope labeling using amino acids in cell culture (SILAC) method. This provides the relative phosphorylation activities of digested peptides at each of five time points after stimulating HeLa cells with epidermal growth factor (EGF). We initially calculated the correlations between the phosphorylation dynamics patterns of every pair of peptides and connected the strongly correlated pairs to construct a network. We found that peptides extracted from the same intracellular fraction (nucleus vs. cytoplasm) tended to be close together within this phosphorylation dynamics-based network. The network was then analyzed using graph theory and compared with five known signal-transduction pathways. The dynamics-based network was correlated with known signaling pathways in the NetPath and Phospho.ELM databases, and especially with the EGF receptor (EGFR) signaling pathway. Although the phosphorylation patterns of many proteins were drastically changed by the EGF stimulation, our results suggest that only EGFR signaling transduction was both strongly activated and precisely controlled.ConclusionsThe construction of a phosphorylation dynamics-based network provides a useful overview of condition-specific intracellular signal transduction using quantitative time-course phosphoproteome data under specific experimental conditions. Detailed prediction of signal transduction based on phosphoproteome dynamics remains challenging. However, since the phosphorylation profiles of kinase-substrate pairs on the specific pathway were localized in the dynamics-based network, our method will be a complementary strategy to explore new components of protein signaling pathways in combination with previous methods (including software) of predicting direct kinase-substrate relationships.


BMC Genomics | 2011

Tight associations between transcription promoter type and epigenetic variation in histone positioning and modification

Tadasu Nozaki; Nozomu Yachie; Ryu Ogawa; Anton Kratz; R. Saito; Masaru Tomita

BackgroundTranscription promoters are fundamental genomic cis-elements controlling gene expression. They can be classified into two types by the degree of imprecision of their transcription start sites: peak promoters, which initiate transcription from a narrow genomic region; and broad promoters, which initiate transcription from a wide-ranging region. Eukaryotic transcription initiation is suggested to be associated with the genomic positions and modifications of nucleosomes. For instance, it has been recently shown that histone with H3K9 acetylation (H3K9ac) is more likely to be distributed around broad promoters rather than peak promoters; it can thus be inferred that there is an association between histone H3K9 and promoter architecture.ResultsHere, we performed a systematic analysis of transcription promoters and gene expression, as well as of epigenetic histone behaviors, including genomic position, stability within the chromatin, and several modifications. We found that, in humans, broad promoters, but not peak promoters, generally had significant associations with nucleosome positioning and modification. Specifically, around broad promoters histones were highly distributed and aligned in an orderly fashion. This feature was more evident with histones that were methylated or acetylated; moreover, the nucleosome positions around the broad promoters were more stable than those around the peak ones. More strikingly, the overall expression levels of genes associated with broad promoters (but not peak promoters) with modified histones were significantly higher than the levels of genes associated with broad promoters with unmodified histones.ConclusionThese results shed light on how epigenetic regulatory networks of histone modifications are associated with promoter architecture.


Journal of Visualized Experiments | 2012

The Green Monster Process for the Generation of Yeast Strains Carrying Multiple Gene Deletions

Yo Suzuki; Jason Stam; Mark Novotny; Nozomu Yachie; Roger S. Lasken; Frederick P. Roth

Phenotypes for a gene deletion are often revealed only when the mutation is tested in a particular genetic background or environmental condition(1,2). There are examples where many genes need to be deleted to unmask hidden gene functions(3,4). Despite the potential for important discoveries, genetic interactions involving three or more genes are largely unexplored. Exhaustive searches of multi-mutant interactions would be impractical due to the sheer number of possible combinations of deletions. However, studies of selected sets of genes, such as sets of paralogs with a greater a priori chance of sharing a common function, would be informative. In the yeast Saccharomyces cerevisiae, gene knockout is accomplished by replacing a gene with a selectable marker via homologous recombination. Because the number of markers is limited, methods have been developed for removing and reusing the same marker(5,6,7,8,9,10). However, sequentially engineering multiple mutations using these methods is time-consuming because the time required scales linearly with the number of deletions to be generated. Here we describe the Green Monster method for routinely engineering multiple deletions in yeast(11). In this method, a green fluorescent protein (GFP) reporter integrated into deletions is used to quantitatively label strains according to the number of deletions contained in each strain (Figure 1). Repeated rounds of assortment of GFP-marked deletions via yeast mating and meiosis coupled with flow-cytometric enrichment of strains carrying more of these deletions lead to the accumulation of deletions in strains (Figure 2). Performing multiple processes in parallel, with each process incorporating one or more deletions per round, reduces the time required for strain construction. The first step is to prepare haploid single-mutants termed ProMonsters, each of which carries a GFP reporter in a deleted locus and one of the toolkit loci-either Green Monster GMToolkit-a or GMToolkit-α at the can1Δ locus (Figure 3). Using strains from the yeast deletion collection(12), GFP-marked deletions can be conveniently generated by replacing the common KanMX4 cassette existing in these strains with a universal GFP-URA3 fragment. Each GMToolkit contains: either the a- or α-mating-type-specific haploid selection marker(1) and exactly one of the two markers that, when both GMToolkits are present, collectively allow for selection of diploids. The second step is to carry out the sexual cycling through which deletion loci can be combined within a single cell by the random assortment and/or meiotic recombination that accompanies each cycle of mating and sporulation.


Gene | 2011

Computational analysis suggests a highly bendable, fragile structure for nucleosomal DNA

Tadasu Nozaki; Nozomu Yachie; Ryu Ogawa; Rintaro Saito; Masaru Tomita

Eukaryotic chromosomal DNA coils around histones to form nucleosomes. Although histone affinity for DNA depends on DNA sequence patterns, how nucleosome positioning is determined by them remains unknown. Here, we show relationships between nucleosome positioning and two structural characteristics of DNA conferred by DNA sequence. Analysis of bendability and hydroxyl radical cleavage intensity of nucleosomal DNA sequences indicated that nucleosomal DNA is bendable and fragile and that nucleosome positional stability was correlated with characteristics of DNA. This result explains how histone positioning is partially determined by nucleosomal DNA structure, illuminating the optimization of chromosomal DNA packaging that controls cellular dynamics.


Genome Research | 2017

Yeast genetic interaction screen of human genes associated with amyotrophic lateral sclerosis: identification of MAP2K5 kinase as a potential drug target

Myungjin Jo; Ah Young Chung; Nozomu Yachie; Minchul Seo; Hyejin Jeon; Youngpyo Nam; Yeojin Seo; Eunmi Kim; Quan Zhong; Marc Vidal; Hae Chul Park; Frederick P. Roth; Kyoungho Suk

To understand disease mechanisms, a large-scale analysis of human-yeast genetic interactions was performed. Of 1305 human disease genes assayed, 20 genes exhibited strong toxicity in yeast. Human-yeast genetic interactions were identified by en masse transformation of the human disease genes into a pool of 4653 homozygous diploid yeast deletion mutants with unique barcode sequences, followed by multiplexed barcode sequencing to identify yeast toxicity modifiers. Subsequent network analyses focusing on amyotrophic lateral sclerosis (ALS)-associated genes, such as optineurin (OPTN) and angiogenin (ANG), showed that the human orthologs of the yeast toxicity modifiers of these ALS genes are enriched for several biological processes, such as cell death, lipid metabolism, and molecular transport. When yeast genetic interaction partners held in common between human OPTN and ANG were validated in mammalian cells and zebrafish, MAP2K5 kinase emerged as a potential drug target for ALS therapy. The toxicity modifiers identified in this study may deepen our understanding of the pathogenic mechanisms of ALS and other devastating diseases.


The Japanese Biochemical Society/The Molecular Biology Society of Japan | 2017

Global landscape of periodically patterned DNA elements in prokaryotic and eukaryotic genomes

Hideto Mori; Daniel Evans Yamamoto; Soh Ishiguro; Masaru Tomita; Nozomu Yachie


The Japanese Biochemical Society/The Molecular Biology Society of Japan | 2017

Establishment and mathematical modeling of a positive feedback genetic circuit on yeast

Yasuhide Onuma; Masaru Tomita; Nozomu Yachie; Yasuhiro Naito

Collaboration


Dive into the Nozomu Yachie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge