Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Numsen Hail is active.

Publication


Featured researches published by Numsen Hail.


Apoptosis | 2006

Mechanisms of fenretinide-induced apoptosis

Numsen Hail; H. J. Kim; Reuben Lotan

Fenretinide, a synthetic retinoid, has emerged as a promising anticancer agent based on numerous in vitro and animal studies, as well as chemoprevention clinical trials. In vitro observations suggest that the anticancer activity of fenretinide may arise from its ability to induce apoptosis in tumor cells. Diverse signaling molecules including reactive oxygen species, ceramide, and ganglioside GD3 can mediate apoptosis induction by fenretinide in transformed, premalignant, and malignant cells. In many cell types, these signaling intermediates appear to be induced by mechanisms that are independent of retinoic acid receptor activation, and ultimately initiate the intrinsic or mitochondrial-mediated pathway of cell elimination. Numerous investigations conducted during the past 10 years have discovered a great deal about the apoptogenic activity of fenretinide. In this review we explore the mechanisms associated with fenretinide-induced apoptosis and highlight certain mechanistic underpinnings of fenretinide-induced cell death that remain poorly understood and thus warrant further characterization.


Free Radical Biology and Medicine | 2008

Cancer chemoprevention: A radical perspective

Numsen Hail; Marcela Cortes; Edgar N. Drake; Julian E. Spallholz

Cancer chemopreventive agents block the transformation of normal cells and/or suppress the promotion of premalignant cells to malignant cells. Certain agents may achieve these objectives by modulating xenobiotic biotransformation, protecting cellular elements from oxidative damage, or promoting a more differentiated phenotype in target cells. Conversely, various cancer chemopreventive agents can encourage apoptosis in premalignant and malignant cells in vivo and/or in vitro, which is conceivably another anticancer mechanism. Furthermore, it is evident that many of these apoptogenic agents function as prooxidants in vitro. The constitutive intracellular redox environment dictates a cells response to an agent that alters this environment. Thus, it is highly probable that normal cells, through adaption, could acquire resistance to transformation via exposure to a chemopreventive agent that promotes oxidative stress or disrupts the normal redox tone of these cells. In contrast, transformed cells, which typically endure an oxidizing intracellular environment, would ultimately succumb to apoptosis due to an uncontrollable production of reactive oxygen species caused by the same agent. Here, we provide evidence to support the hypothesis that reactive oxygen species and cellular redox tone are exploitable targets in cancer chemoprevention via the stimulation of cytoprotection in normal cells and/or the induction of apoptosis in transformed cells.


Free Radical Biology and Medicine | 2008

Mitochondrial reactive oxygen species affect sensitivity to curcumin-induced apoptosis.

Numsen Hail

Curcumin exhibits anticancer activity in vivo and triggers tumor cell apoptosis in vivo and in vitro. Several in vitro studies suggest that curcumin-induced apoptosis is associated with reactive oxygen species (ROS) production and/or oxidative stress in transformed cells. This study compared and contrasted the effects of curcumin on human skin cancer cells and their respiration-deficient (rho0) clones to characterize the prospective oxidative stress signaling responsible for initiating apoptosis. Curcumin promoted a dose-and time-dependent G2/M cell cycle arrest and/or apoptosis in COLO 16 cells. Apoptosis induction in COLO 16 cells was associated with DNA fragmentation, cell shrinkage, the externalization of cell membrane phosphatidylserine, and mitochondrial disruption, which were preceded by an increase in intracellular ROS production. Pharmacologically lowering the mitochondrial bioenergetic capacity, as well as the constitutive ROS levels, in COLO 16 cells suppressed the cytotoxic effects of curcumin. Correspondingly, the rho0 counterparts of COLO 16 cells were markedly resistant to ROS production, mitochondrial disruption, and DNA fragmentation following curcumin exposure. These observations implied that the diminution of mitochondrial ROS production protected cells against the cytotoxic effects of curcumin, and support the notion that mitochondrial respiration and redox tone are pivotal determinants in apoptosis signaling by curcumin in human skin cancer cells.


Molecular Pharmacology | 2011

Phosphatase and Tensin Homolog Deleted on Chromosome 10 (PTEN) Inhibition by 4-Hydroxynonenal Leads to Increased Akt Activation in Hepatocytes

Colin T. Shearn; Rebecca L. Smathers; Benjamin J. Stewart; Kristofer S. Fritz; James J. Galligan; Numsen Hail; Dennis R. Petersen

The production of reactive aldehydes such as 4-hydroxynonenal (4-HNE) is proposed to be an important factor in the etiology of alcoholic liver disease. To understand the effects of 4-HNE on homeostatic signaling pathways in hepatocytes, cellular models consisting of the human hepatocellular carcinoma cell line (HepG2) and primary rat hepatocytes were evaluated. Treatment of both HepG2 cells and primary hepatocytes with subcytotoxic concentrations of 4-HNE resulted in the activation of Akt within 30 min as demonstrated by increased phosphorylation of residues Ser473 and Thr308. Quantification and subsequent immunocytochemistry of phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3[rsqb] resulted in a 6-fold increase in total PtdIns(3,4,5)P3 and increased immunostaining at the plasma membrane after 4-HNE treatment. Cotreatment of HepG2 cells with 4-HNE and the phosphatidylinositol 3-kinase (PI3K) inhibitor 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (Ly294002) or the protein phosphatase 2A (PP2A) inhibitor okadaic acid revealed that the mechanism of activation of Akt is PI3K-dependent and PP2A-independent. Using biotin hydrazide detection, it was established that the incubation of HepG2 cells with 4-HNE resulted in increased carbonylation of the lipid phosphatase known as “phosphatase and tensin homolog deleted on chromosome 10” (PTEN), a key regulator of Akt activation. Activity assays both in HepG2 cells and recombinant PTEN revealed a decrease in PTEN lipid phosphatase activity after 4-HNE application. Mass spectral analysis of 4-HNE-treated recombinant PTEN detected a single 4-HNE adduct. Subsequent analysis of Akt dependent physiological consequences of 4-HNE in HepG2 cells revealed significant increases in the accumulation of neutral lipids. These results provide a potential mechanism of Akt activation and cellular consequences of 4-HNE in hepatocytes.


Hepatology | 2010

Lactoferrin protects against acetaminophen-induced liver injury in mice†

Hao Yin; Linling Cheng; Michael P. Holt; Numsen Hail; Robert MacLaren; Cynthia Ju

Acetaminophen‐induced liver injury (AILI) is a significant health problem and represents the most frequent cause of drug‐induced liver failure in the United States. The development and implementation of successful therapeutic intervention strategies have been demanding, due to significant limitations associated with the current treatment for AILI. Lactoferrin (Lac), a glycoprotein present in milk, has been demonstrated to possess a multitude of biological functions. Our study demonstrated a profound protective effect of Lac in a murine model of AILI, which was not dependent on its iron‐binding ability, inhibition of acetaminophen (APAP) metabolism, or a direct cytoprotective effect on hepatocytes. Instead, Lac treatment significantly attenuated APAP‐induced liver sinusoidal endothelial cell dysfunction and ameliorated hepatic microcirculation disorder. This protective effect of Lac appeared to be dependent on hepatic resident macrophages (Kupffer cells [KCs]). Conclusion: Collectively, our data indicate that Lac, through activation of KCs, inhibited APAP‐induced liver sinusoidal endothelial cell damage and improved hepatic congestion, thereby protecting against AILI. These findings reveal the significant therapeutic potential of Lac during AILI and other types of liver diseases. (HEPATOLOGY 2010.)


Free Radical Biology and Medicine | 2010

Dihydroorotate dehydrogenase is required for N-(4-hydroxyphenyl)retinamide-induced reactive oxygen species production and apoptosis

Numsen Hail; Ping Chen; Jadwiga J. Kepa; Lane R. Bushman; Colin T. Shearn

The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) exhibits anticancer activity in vivo and triggers apoptosis in transformed cells in vitro. Thus, apoptosis induction is acknowledged as a mechanistic underpinning for 4HPRs cancer preventive and therapeutic effects. Apoptosis induction by 4HPR is routinely preceded by and dependent on the production of reactive oxygen species (ROS) in transformed cells. Very little evidence exists, outside the possible involvement of the mitochondrial electron transport chain or the plasma membrane NADPH oxidase complex, that would pinpoint the predominant site of 4HPR-induced ROS production in transformed cells. Here, we investigated the role of dihydroorotate dehydrogenase (DHODH; an enzyme associated with the mitochondrial electron transport chain and required for de novo pyrimidine synthesis) in 4HPR-induced ROS production and attendant apoptosis in transformed skin and prostate epithelial cells. In premalignant prostate epithelial cells and malignant cutaneous keratinocytes the suppression of DHODH activity by the chemical inhibitor teriflunomide or the reduction in DHODH protein expression by RNA interference markedly reduced 4HPR-induced ROS generation and apoptosis. Conversely, colon carcinoma cells that lacked DHODH expression were markedly resistant to the pro-oxidant and cytotoxic effects of 4HPR. Together, these results strongly implicate DHODH in 4HPR-induced ROS production and apoptosis.


Apoptosis | 2009

Selective apoptosis induction by the cancer chemopreventive agent N-(4-hydroxyphenyl)retinamide is achieved by modulating mitochondrial bioenergetics in premalignant and malignant human prostate epithelial cells

Numsen Hail; Ping Chen; Jadwiga J. Kepa

Prostate tumorigenesis is coupled with an early metabolic switch in transformed prostate epithelial cells that effectively increases their mitochondrial bioenergetic capacity. The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) inhibits prostate cancer development in vivo, and triggers reactive oxygen species (ROS)-dependent prostate cancer cell apoptosis in vitro. The possibility that 4HPR-induced ROS production is associated with mitochondrial bioenergetics and required for apoptosis induction in transformed prostate epithelial cells in vitro would advocate a prospective mechanistic basis for 4HPR-mediated prostate cancer chemoprevention in vivo. We investigated this tenet by comparing and contrasting 4HPR’s effects on premalignant PWR-1E and malignant DU-145 human prostate epithelial cells. 4HPR promoted a dose- and/or time-dependent apoptosis induction in PWR-1E and DU-145 cells, which was preceded by and dependent on an increase in mitochondrial ROS production. In this regard, the PWR-1E cells were more sensitive than the DU-145 cells, and they consumed roughly twice as much oxygen as the DU-145 cells suggesting oxidative phosphorylation was higher in the premalignant cells. Interestingly, increasing the [Ca2+] in the culture medium of the PWR-1E cells attenuated their proliferation as well as their mitochondrial bioenergetic capacity and 4HPR’s cytotoxic effects. Correspondingly, the respiration-deficient derivatives (i.e., ρ0 cells lacking mitochondrial DNA) of DU-145 cells were markedly resistant to 4HPR-induced ROS production and apoptosis. Together, these observations implied that the reduction of mitochondrial bioenergetics protected PWR-1E and DU-145 cells against the cytotoxic effects of 4HPR, and support the concept that oxidative phosphorylation is an essential determinant in 4HPR’s apoptogenic signaling in transformed human prostate epithelial cells.


Apoptosis | 2010

Teriflunomide encourages cytostatic and apoptotic effects in premalignant and malignant cutaneous keratinocytes

Numsen Hail; Ping Chen; Joseph E. Rower; Lane R. Bushman

Teriflunomide (TFN) reportedly inhibits de novo pyrimidine synthesis and exhibits anti-inflammatory, disease-modifying activities inxa0vivo. These qualities would suggest that TFN could be useful in skin cancer chemoprevention or therapy. We investigated some mechanistic aspects of this tenet by characterizing the effects of TFN on premalignant and malignant human cutaneous keratinocytes. TFN promoted a dose- and/or time-dependent cytostasis and in these cells, which was followed by apoptosis. These features occurred in the presence of a physiological concentration of uridine in the culture medium. The short-term S phase arrest triggered by TFN was reversible in the malignant keratinocytes, and the indirect apoptosis induction was apparently preceded by mitochondrial disruption and reactive oxygen species production in both the premalignant and malignant keratinocytes. Respiration deficient malignant keratinocytes were resistant to the acute cytostatic and latent apoptotic effects of TFN implicating de novo pyrimidine synthesis and mitochondrial bioenergetics as the primary targets for TFN in the respiring cells. These novel mechanistic findings support a role for TFN in skin cancer chemoprevention and therapy.


Neoplasia | 2010

Teriflunomide (Leflunomide) Promotes Cytostatic, Antioxidant, and Apoptotic Effects in Transformed Prostate Epithelial Cells: Evidence Supporting a Role for Teriflunomide in Prostate Cancer Chemoprevention

Numsen Hail; Ping Chen; Lane R. Bushman


The FASEB Journal | 2010

Lactoferrin Protects Against Acetaminophen-Induced Liver Injury in Mice

Hao Yin; Linling Cheng; Michael P. Holt; Numsen Hail; Robert E. MacLaren; Cynthia Ju

Collaboration


Dive into the Numsen Hail's collaboration.

Top Co-Authors

Avatar

Ping Chen

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Yin

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Jadwiga J. Kepa

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Linling Cheng

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Michael P. Holt

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Benjamin J. Stewart

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge