Nuno Costa-Borges
Autonomous University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nuno Costa-Borges.
Cellular Reprogramming | 2010
Nuno Costa-Borges; Josep Santaló; Elena Ibáñez
Reprogramming of differentiated nuclei into a totipotent embryonic state following somatic cell nuclear transfer (SCNT) is not efficient. Previous studies in the hybrid B6D2F1 mouse strain revealed that a transient treatment of the SCNT embryos with the histone deacetylase inhibitor (HDACi) trichostatin A (TSA) significantly enhance the potential of the cloned embryos to develop in vitro and to term. Here, we compare two different SCNT protocols with TSA and explore, for the first time, the effect of another HDACi, valproic acid (VPA), on the in vitro development, blastocyst quality, and full-term development of mouse B6CBAF1 cloned embryos. Rates of blastocyst development in SCNT embryos treated with either 5 nM TSA during and after activation (31.8%) or with 100 nM TSA or 2 mM VPA before and during activation (34.5 and 38.3%, respectively) were clearly superior to those of nontreated SCNT embryos (22.9-25.1%). These increased in vitro development rates of the HDACi-treated embryos were correlated with an increased level of histone H3 lysine 14 acetylation and an improved blastocyst quality, as judged by the increased number of total and ICM cells in comparison to the nontreated embryos (30-35% increase). Treatment of SCNT embryos with TSA or VPA also allowed the obtention of viable cloned mice, whereas none could be produced from untreated SCNT embryos. In conclusion, we have demonstrated for the first time that VPA can improve the in vitro and full-term development of B6CBAF1 SCNT embryos, at a similar level as TSA. Our findings may open new opportunities to improve cloning efficiencies in other mouse strains or species.
Fertility and Sterility | 2016
Nuno Costa-Borges; Marta Bellés; Marcos Meseguer; Daniela Galliano; A. Ballesteros; G. Calderon
OBJECTIVE To evaluate the efficiency of using a continuous (one-step) protocol with a single medium for the culture of human embryos in a time-lapse incubator (TLI). DESIGN Prospective cohort study on sibling donor oocytes. SETTING University-affiliated in vitro fertilization (IVF) center. PATIENT(S) Embryos from 59 patients. INTERVENTION(S) Culture in a TLI in a single medium with or without renewal of the medium on day-3. MAIN OUTCOME MEASURE(S) Embryo morphology and morphokinetic parameters, clinical pregnancy, take-home baby rate, and perinatal outcomes. RESULT(S) The blastocyst rates (68.3 vs. 66.8%) and the proportion of good-quality blastocysts (transferred plus frozen) obtained with the two-step (80.0%) protocol were statistically significantly similar to those obtained in the one-step protocol (72.2%). Similarly, morphokinetic events from early cleavage until late blastocyst stages were statistically significantly equivalent between both groups. No differences were found either in clinical pregnancy rates when comparing pure transfers performed with embryos selected from the two-step (75.0%), one-step (70.0%, respectively), and mixed (57.1%) groups. A total of 55 out of 91 embryos transferred implanted successfully (60.4%), resulting in a total of 37 newborns with a comparable birth weight mean among groups. CONCLUSION(S) Our findings support the idea that in a TLI with a controlled air purification system, human embryos can be successfully cultured continuously from day 0 onward in single medium with no need to renew it on day-3. This strategy does not affect embryo morphokinetics or development to term and offers more stable culture conditions for embryos as well as practical advantages and reduced costs for the IVF laboratory.
Cloning and Stem Cells | 2009
Nuno Costa-Borges; María Teresa Paramio; G. Calderon; Josep Santaló; Elena Ibáñez
Chemically assisted enucleation has been successfully applied to porcine and bovine oocytes to prepare recipient cytoplasts for nuclear transfer procedures. In this study, the antimitotic drugs demecolcine, nocodazole, and vinblastine were first assessed for their ability to induce the formation of cortical membrane protrusions in mouse, goat, and human oocytes. While only 2% of the treated human oocytes were able to form a protrusion, high rates of protrusion formation were obtained both in mouse (84%) and goat oocytes (92%), once the treatment was optimized for each species. None of the antimitotics applied was superior to the others in terms of protrusion formation, but mouse oocytes treated with vinblastine were unable to restore normal spindle morphology after drug removal and their in vitro development after parthenogenetic activation was severely compromised, rendering this antimitotic useless for chemically assisted enucleation approaches. Aspiration of the protrusions in mouse oocytes treated with demecolcine or nocodazole yielded 90% of successfully enucleated oocytes and allowed the extraction of a smaller amount of cytoplasm than with mechanical enucleation, but both enucleation methods resulted in the depletion of spindle-associated gamma-tubulin from the prepared cytoplasts. Treatment of mouse oocytes with demecolcine or nocodazole had no effect on their in vitro development after parthenogenetic activation, or on their ability to repolymerize a new spindle after the removal of the drug or the reconstruction of the treated cytoplasts with a somatic nucleus. Therefore, demecolcine- and nocodazole-assisted enucleation appears as an efficient alternative to mechanical enucleation, which can simplify nuclear transfer procedures.
Theriogenology | 2011
Nuno Costa-Borges; María Teresa Paramio; Josep Santaló; Elena Ibáñez
Treatment of pre-activated oocytes with demecolcine (DEM) has been shown to induce the extrusion of all oocyte chromosomes within the second polar body (PB2). However, induced enucleation (IE) rates are generally low and the competence of these cytoplasts to support embryonic development following somatic cell nuclear transfer (SCNT) is impaired. Here, we explored whether short treatments with DEM or another antimitotic, nocodazole (NOC), improve IE efficiency, and determined the most appropriate timing for nuclear transfer in the cytoplasts produced. We show, for the first time, that IE can be accomplished in mouse and goat oocytes using NOC and that short treatments with DEM or NOC result in similar IE rates, which proved to be strain- and species-specific. Because enucleation induced by both antimitotic drugs is reversible, the IE protocol was combined with the mechanical aspiration of PB2s to increase permanent enucleation rates in mouse oocytes. None of the cloned mouse embryos produced from the resultant cytoplasts developed to the blastocyst stage. However, when they were reconstructed prior to the activation and antimitotic treatment, their in vitro embryonic development was similar to that of cloned embryos produced from mechanically-enucleated oocytes.
Journal of Visualized Experiments | 2009
Nuno Costa-Borges; Sheyla González; Elena Ibáñez; Josep Santaló
Embryos and oocytes were first successfully cryopreserved more than 30 years ago, when Whittingham et al.1 and Wilmut 2 separately described that mouse embryos could be frozen and stored at -196 °C and, a few years later, Parkening et al. 3 reported the birth of live offspring resulting from in vitro fertilization (IVF) of cryopreserved oocytes. Since then, the use of cryopreservation techniques has rapidly spread to become an essential component in the practice of human and animal assisted reproduction and in the conservation of animal genetic resources. Currently, there are two main methods used to cryopreserve oocytes and embryos: slow freezing and vitrification. A wide variety of approaches have been used to try to improve both techniques and millions of animals and thousands of children have been born from cryopreserved embryos. However, important shortcomings associated to cryopreservation still have to be overcome, since ice-crystal formation, solution effects and osmotic shock seem to cause several cryoinjuries in post-thawed oocytes and embryos. Slow freezing with programmable freezers has the advantage of using low concentrations of cryoprotectants, which are usually associated with chemical toxicity and osmotic shock, but their ability to avoid ice-crystal formation at low concentrations is limited. Slow freezing also induces supercooling effects that must be avoided using manual or automatic seeding 4. In the vitrification process, high concentrations of cryoprotectants inhibit the formation of ice-crystals and lead to the formation of a glasslike vitrified state in which water is solidified, but not expanded. However, due to the toxicity of cyroprotectants at the concentrations used, oocytes/embryos can only be exposed to the cryoprotectant solution for a very short period of time and in a minimum volume solution, before submerging the samples directly in liquid nitrogen 5. In the last decade, vitrification has become more popular because it is a very quick method in which no expensive equipment (programmable freezer) is required. However, slow freezing continues to be the most widely used method for oocyte/embryo cryopreservation. In this video-article we show, step-by-step, how to collect and slowly freeze hamster oocytes with high post-thaw survival rates. The same procedure can also be applied to successfully freeze and thaw mouse embryos at different stages of preimplantation development.
Reproduction | 2011
Nuno Costa-Borges; Sheyla González; Josep Santaló; Elena Ibáñez
Mouse recipient cytoplasts for somatic cell nuclear transfer (SCNT) are routinely prepared by mechanical enucleation (ME), an invasive procedure that requires expensive equipment and considerable micromanipulation skills. Alternatively, oocytes can be enucleated using chemically assisted (AE) or chemically induced (IE) enucleation methods that are technically simple. In this study, we compared the reprogramming potential and developmental capacity of cloned embryos generated by ME, AE, and IE procedures and treated with the histone deacetylase inhibitor valproic acid. A rapid and almost complete deacetylation of histone H3 lysine 14 in the somatic nucleus followed by an equally rapid and complete re-acetylation after activation was observed after the injection of a cumulus cell nucleus into ME and AE cytoplasts. In contrast, histone deacetylation occurred at a much lower level in IE cytoplasts. Despite these differences, the cloned embryos generated from the three types of cytoplasts developed into blastocysts of equivalent total and inner cell mass mean cell numbers, and the rates of blastocyst formation and embryonic stem cell derivation were similar among the three groups. The cloned embryos produced from ME and AE cytoplasts showed an equivalent rate of full-term development, but no offspring could be obtained from the IE group, suggesting a lower reprogramming capacity of IE cytoplasts. Our results demonstrate the usefulness of AE in mouse SCNT procedures, as an alternative to ME. AE can facilitate oocyte enucleation and avoid the need for expensive microscope optics, or for potentially damaging Hoechst staining and u.v. irradiation, normally required in ME procedures.
Cryobiology | 2018
D. Castello; Ana Cobo; Enric Mestres; Maria Garcia; Ivette Vanrell; José Remohí; G. Calderon; Nuno Costa-Borges
Vitrification is currently a well-established technique for the cryopreservation of oocytes and embryos. It can be achieved either by direct (open systems) or indirect (closed systems) contact with liquid nitrogen. While there is not a direct evidence of disease transmission by transferred cryopreserved embryos, it was experimentally demonstrated that cross-contamination between liquid nitrogen and embryos may occur, and thus, the use of closed devices has been recommended to avoid the risk of contamination. Unfortunately, closed systems may result in lower cooling rates compared to open systems, due to the thermal insulation of the samples, which may cause ice crystal formation resulting in impaired results. In our study, we aimed to validate a newly developed vitrification device (Cryotop SC) that has been specifically designed for being used as a closed system. The cooling and warming rates calculated for the closed system were 5.254 °C/min and 43.522 °C/min, respectively. Results obtained with the closed system were equivalent to those with the classic Cryotop (open system), with survival rates in oocytes close to 100%. Similarly, the potential of the survived oocytes to develop up to good quality blastocysts after parthenogenetic activation between both groups was statistically equivalent. Assessment of the meiotic spindle and chromosome distribution by fluorescence microscopy in vitrified oocytes showed alike morphologies between the open and closed system. No differences were found either between the both systems in terms of survival rates of one-cell stage embryos or blastocysts, as well as, in the potential of the vitrified/warmed blastocysts to develop to full-term after transferred to surrogate females.
Fertility and Sterility | 2017
Nuno Costa-Borges; E. Mestres; I. Miguel-Escalada; R. Basalmeda; M. Garcia; I. Vanrell; J. Gonzalez; G. Calderon
Archive | 2011
Nuno Costa-Borges; Sheyla González; Josep Santaló; Elena Ibáñez
Reproduction, Fertility and Development | 2009
Nuno Costa-Borges; Sheyla González; Josep Santaló; Elena Ibáñez