Nunzia Migliaccio
University of Naples Federico II
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nunzia Migliaccio.
Biochimie | 2011
Annalisa Lamberti; Carmen Sanges; Angela Chambery; Nunzia Migliaccio; Francesco Rosso; Antimo Di Maro; Ferdinando Papale; Monica Marra; Augusto Parente; Michele Caraglia; Alberto Abbruzzese; Paolo Arcari
The eukaryotic translation elongation factor 1A (eEF1A), besides to its canonical role in protein synthesis, is also involved in several other cellular processes, depending on changes in cellular location, cell type, concentration of ligands, substrates or cofactors. Therefore eEF1A is a moonlighting protein that participates to a network of molecular interactions involving its structural domains. Since the identification of novel protein-protein interactions represents important tasks in post-genomic era, the interactome of eEF1A1 M-domain was investigated by using a proteomic approach. To this purpose, the eEF1A1 M-domain was fused with glutathione-S-transferase (GST) and Strep-tag (ST) at its N- and C-terminal, respectively. The recombinant protein (GST-M-ST) was purified and incubated with a mouse embryo lysate by applying an affinity chromatography strategy. The interacting proteins were separated by SDS-PAGE and identified by peptide mass fingerprinting using MALDI-TOF mass spectrometry. Besides the known partners, the pool of interacting proteins contained sorbin, a polypeptide of 153 amino acids present in SH3 domain-containing adaptor proteins, such as SORBS2. This interaction was also assessed by Western blot on immunoprecipitate from mouse embryo or H1355 cell lysates with anti-eEF1A or anti-SORBS2 antibodies and on eEF1A1-His pull-down from H1355 cell lysate with antibody anti-SORBS2. Furthermore, the interaction between eEF1A and SORBS2 was also confirmed by confocal microscopy and FRET analysis. Interestingly, a co-localization of SORBS2 and eEF1A was evidenced at level of plasma membrane, thus suggesting the involvement of eEF1A1 in novel key signal transduction complexes.
International Journal of Nanomedicine | 2016
Nicola M. Martucci; Nunzia Migliaccio; Immacolata Ruggiero; Francesco Albano; Gaetano Calì; Simona Romano; Monica Terracciano; Ilaria Rea; Paolo Arcari; Annalisa Lamberti
B-cell lymphoma is associated with incomplete response to treatment, and the development of effective strategies targeting this disease remains challenging. A new personalized B-cell lymphoma therapy, based on a site-specific receptor-mediated drug delivery system, was developed in this study. Specifically, natural silica-based nanoparticles (diatomite) were modified to actively target the antiapoptotic factor B-cell lymphoma/leukemia 2 (Bcl2) with small interfering RNA (siRNA). An idiotype-specific peptide (Id-peptide) specifically recognized by the hypervariable region of surface immunoglobulin B-cell receptor was exploited as a homing device to ensure specific targeting of lymphoma cells. Specific nanoparticle uptake, driven by the Id-peptide, was evaluated by flow cytometry and confocal microscopy and was increased by approximately threefold in target cells compared with nonspecific myeloma cells and when a random control peptide was used instead of Id-peptide. The specific internalization efficiency was increased by fourfold when siRNA was also added to the modified nanoparticles. The modified diatomite particles were not cytotoxic and their effectiveness in downregulation of gene expression was explored using siRNA targeting Bcl2 and evaluated by quantitative real-time polymerase chain reaction and Western blot analyses. The resulting gene silencing observed is of significant biological importance and opens new possibilities for the personalized treatment of lymphomas.
Journal of Biophotonics | 2018
Stefano Managò; Nunzia Migliaccio; M. Terracciano; Michela Napolitano; Nicola M. Martucci; Luca De Stefano; Ivo Rendina; Anna Chiara De Luca; Annalisa Lamberti; Ilaria Rea
Porous biosilica nanoparticles obtained from diatomites (DNPs) have been recently demonstrated to be non-toxic nanovectors of therapeutic agents in cancer cells. In this work, the internalization kinetics and intracellular spatial distribution of functionalized DNPs incubated with human lung epidermoid carcinoma cell line (H1355) up to 72 hours are investigated by Raman imaging. The label-free Raman results are compared with confocal fluorescence microscopy and photoluminescence (PL) data. Raman bands specifically assigned to DNPs and cellular components provide evidence that the nanovectors are internalized and co-localize with lipid environments. A considerable DNPs uptake in cells is observed within 6 hours, with equilibrium being achieved after 18 hours. The obtained data show the presence of DNPs up to 72 hours, without damage to cell viability or morphology. The PL measurements performed on DNPs not penetrating the cells at different incubation times are strongly correlated with the results obtained by Raman imaging and confocal microscopy analyses.
Amino Acids | 2016
Nunzia Migliaccio; Nicola M. Martucci; Immacolata Ruggiero; Carmen Sanges; Shinji Ohkubo; Annalisa Lamberti; Enzo Agostinelli; Paolo Arcari
The link between eukaryotic translation elongation factor 1A (eEF1A) and signal transduction pathways through the regulatory mechanism of phosphorylation has never been considered. In this review, we focus on the different kinases that recognize the Ser and Thr residues of the eEF1A1 and eEF1A2 isoforms and regulate their involvement in different cellular processes like cell survival and apoptosis. In this context, polyamines seem to play a role in the regulation of the translation elongation process by modulating the Ser/Thr kinases involved in the phosphorylation of translation elongation factors.
Biomedical Optics Express | 2015
Nicola M. Martucci; Ilaria Rea; Immacolata Ruggiero; Monica Terracciano; Luca De Stefano; Nunzia Migliaccio; Camillo Palmieri; Giuseppe Scala; Paolo Arcari; Ivo Rendina; Annalisa Lamberti
In this paper, a new strategy for highly selective and sensitive direct detection of lymphoma cells by exploiting the interaction between a peptide and its B-cell receptor, has been evaluated. In particular, an idiotype peptide, able to specifically bind the B-cell receptor of A20 cells in mice engrafted with A20 lymphoma, has been used as molecular probe. The new detection technique has been demonstrated on a planar crystalline silicon chip. Coverage of 85% of silicon surface and detection efficiency of 8.5 × 10(-3) cells/μm(2) were obtained. The recognition strategy promises to extend its application in studying the interaction between ligands and their cell-surface receptors.
Journal of Atomic and Molecular Physics | 2012
Annalisa Lamberti; Carmen Sanges; Nunzia Migliaccio; Luca De Stefano; Ilaria Rea; Emanuele Orabona; Giuseppe Scala; Ivo Rendina; Paolo Arcari
One of the most important goals in the fields of biology and medicine is the possibility to dispose of efficient tools for the characterization of the extraordinary complexity of ligand-receptor interactions. To approach this theme, we explored the use of crystalline silicon (cSi) technology for the realization of a biotechnological device in which the ligand-receptor interactions are revealed by means of optical measurements. Here, we describe a chemical procedure for the functionalization of microwell etched on silicon wafers, and the subsequent anchoring of biological molecules like an antibody anti-A20 murine lymphoma cell line. The optical analysis of the interaction on the biochips between the bound biomolecule and their corresponding ligand indicated that the functionalized cSi is suitable for this application.
Biomolecular Concepts | 2013
Nunzia Migliaccio; Carmen Sanges; Immacolata Ruggiero; Nicola M. Martucci; Emilia Rippa; Paolo Arcari; Annalisa Lamberti
Abstract In recent years, a large amount of evidence has given a central role to translational control in diseases such as cancer, tissue hypertrophy and neurodegeneration. Its deregulation can directly modulate cell cycling, transformation and survival response. The aim of this review is to describe the interaction between Raf activation and the main characters of the translational machinery, such as the elongation factor 1A (eEF1A), which has been recognized in recent years as one of the most interesting putative oncogenes. A particular emphasis is given to an intriguing non-canonical role that eEF1A can play in the relationship between the Ras→Raf-1→MEK1→ERK-1/2 and PI3K→Akt signaling pathways. Recently, our group has described a C-Raf kinase-mediated phosphorylation of eEF1A triggered by a survival pathway induced upon interferon alpha (IFNα) treatment in the human epidermoid cancer cell line (H1355). This phosphorylation seems to be the center of the survival pathway that counteracts the well-known pro-apoptotic function of IFNα. Furthermore, we have identified two new phosphorylation sites on eEF1A (Ser21 and Thr88) that are substrates for Raf kinases in vitro and, likely, in vivo as well. These residues seem to have a significant functional role in the control of cellular processes, such as cell proliferation and survival. In fact, overexpression of eEF1A2 in gemcitabine-treated cancer cells caused the upregulation of phosphoAkt and an increase in cell viability, thereby suggesting that eEF1A2 could exert its oncogenic behavior by participating in the regulation of PI3K pathway.
Cancer Cell International | 2015
Nunzia Migliaccio; Camillo Palmieri; Immacolata Ruggiero; Giuseppe Fiume; Nicola M. Martucci; Iris Scala; Ileana Quinto; Giuseppe Scala; Annalisa Lamberti; Paolo Arcari
BackgroundDespite the clinical response of conventional anticancer therapy, including chemotherapeutic treatments, radiation therapy and corticosteroids, tumorigenic B-cell lymphomas show an incomplete response to clinical practices that result in a minimal residual disease (MRD) where few residual neoplastic cells undetected in vivo, replenish the cancer cell reservoir. This scenario, which is also shared with other cancer diseases, requires the development of strategies to advance in novel, selective targeting toward the tumorigenic cells that survive to the anticancer agents.MethodsHere, we have taken advantage of the therapeutic properties of an idiotype specific peptide (pA20-36) that bind specifically to murine B-lymphoma cells in the setting of an anti cancer strategy, based on the selected delivery of electrostatic-based complex, peptide-siRNA. To this end, two engineered, arginine rich, peptides that included the pA20-36 targeting sequence were designed to bind fluorescent-labelled siRNA. One peptide presented 9 Arg at the C-terminal of pA20-36 whereas the other included 5 Arg at the N- and C-terminus, respectively.ResultsCompared to the control and random peptide-siRNA complexes, both pA20-36-siRNA complexes were endowed with the selective delivering of fluorescent-labelled siRNA toward the A20 murine B-cell lymphoma, as evaluated by cytofluorimetry and confocal microscopy, whereas fluorescent-labelled siRNA alone was not internalized in the selected cells. Compared to peptide controls, the use of the modified pA20-36 peptides complexed with siRNA anti-GAPDH and anti-Bcl2 showed a down-regulation in the expression levels of the corresponding genes.ConclusionsPeptide-siRNA complex can be suitable tool for both selective peptide-driven cell targeting and gene silencing. In this setting, the improvement of this strategy is expected to provide a safe and non-invasive approach for the delivery of therapeutic molecules.
Biophotonics: Photonic Solutions for Better Health Care VI | 2018
Stefano Managò; Nunzia Migliaccio; Monica Terracciano; Michela Napolitano; Nicola M. Martucci; Luca De Stefano; Ivo Rendina; Anna Chiara De Luca; Annalisa Lamberti; Ilaria Rea
In this work, we employed the Raman microscopy to study the internalization kinetics and spatial distribution of small interfering RNA (siRNA)-diatomite nanoparticles (DNPs) complex in human lung epidermoid carcinoma cell line (H1355) up to 72 h. Raman images are compared with confocal fluorescence microscopy results. The Raman analysis provides that the siRNA-DNPs are internalized and co-localized in lipid vesicles within 18 h, after that equilibrium is achieved.
Archive | 2016
M. Terracciano; L. De Stefano; Hélder A. Santos; Nicola M. Martucci; Immacolata Ruggiero; I. Rendina; Nunzia Migliaccio; Annalisa Lamberti; Ilaria Rea
Diatomite is a natural porous silica material of sedimentary origin, formed by remains of diatom skeletons called “frustules.” The abundance in many areas of the world and the peculiar physico-chemical properties made diatomite an intriguing material for several applications ranging from food production to pharmaceutics. However, diatomite is a material still rarely used in biomedical applications. In this chapter, the properties of diatom frustules reduced to nanoparticles, with an average diameter less than 350 nm, as potential drug vectors are described. Their biocompatibility, cellular uptake, and capability to transport molecules inside cancer cells are discussed. Preliminary studies of in vivo toxicity are also presented.