Nunzio Cennamo
Seconda Università degli Studi di Napoli
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nunzio Cennamo.
Sensors | 2011
Nunzio Cennamo; Davide Massarotti; Laura Conte; Luigi Zeni
This paper reports the fabrication and testing of two configurations of optical sensor systems based on Surface Plasmon Resonance (SPR) at the interface of a liquid sample and sandwiched structures realized starting from the exposed core of a Plastic Optical Fiber (POF). The proposed geometries have proven to be suitable for measuring the refractive indexes of liquids whose refractive index falls around 1.35. Furthermore, the proposed sensing head, being low cost and relatively easy to realize, may be very attractive for biosensor implementation.
Sensors | 2013
Nunzio Cennamo; Davide Massarotti; Ramona Galatus; Laura Conte; Luigi Zeni
In silica optical fiber Surface Plasmon Resonance (SPR)-based sensors, an increase in fiber core diameter produces a corresponding increase in the sensitivity and Signal to Noise Ratio (SNR). In Plastic Optical Fiber (POF) realized in PMMA there are different influences of design parameters on the performance, as both sensitivity and SNR are concerned. In particular, the SNR, for different refractive index values of the analyte, in a 250 μm diameter POF is greater than the one in 1,000 μm diameter POF. On the other hand, the sensitivity, for the same refractive index values of the analyte, in a 1,000 μm diameter POF is greater than the one in a 250 μm diameter POF. The results of an experimental analysis demonstrating the above behavior are reported.
Talanta | 2015
Nunzio Cennamo; Maria Pesavento; L. Lunelli; L. Vanzetti; Cecilia Pederzolli; Luigi Zeni; Laura Pasquardini
The introduction of new compact systems for sensitive, fast and simplified analysis is currently playing a substantial role in the development of point-of-care solutions aimed to assist both prognosis and diagnosis. Here we report a simple and low cost biosensor based on Surface Plasmon Resonance (SPR) taking advantage of a plastic optical fiber (POF) for the detection of Vascular endothelial growth factor (VEGF), selected as a circulating protein potentially associated with cancer. Our system is based onto two crucial aspects. By one hand, the functional layer which allows the transduction signal is based on DNA aptamers, short oligonucleotide sequences that bind to non-nucleic acid targets with high affinity and specificity. By the other hand, the light guiding structure is based on a POF with a planar gold layer as the sensing region, which is particularly suitable for bioreceptors implementation. The sensor revealed to be really useful in the interface characterization. The developed system is relatively easy to realize and could well address the development of a rapid, portable and low cost diagnostic platform, with a sensitivity in the nanomolar range.
IEEE Sensors Journal | 2006
Romeo Bernini; Nunzio Cennamo; Aldo Minardo; Luigi Zeni
Optimization of planar waveguides for fluorescence biosensing is presented in this paper. In particular, the authors show that optical (refractive index) and geometrical parameters have a strong influence on the efficiency of excitation and collection of fluorescent signals. Numerical analyses show that a single-mode slab waveguide, operating at its fundamental transverse magnetic mode and near its cutoff point, results in an efficient fluorescence excitation when employed as evanescent wave biosensor. A high-refractive index contrast is demonstrated to be the key parameter for an efficient fluorescence collection. Other geometries that are an alternative to the classical slab waveguide may result in an improvement of the fluorescence excitation and collection efficiencies
Sensors | 2013
Nunzio Cennamo; Girolamo D'Agostino; Alice Donà; Giacomo Dacarro; Piersandro Pallavicini; Maria Pesavento; Luigi Zeni
In this paper a refractive index sensor based on localized surface plasmon resonance (LSPR) in a Plastic Optical Fiber (POF), is presented and experimentally tested. LSPR is achieved exploiting five-branched gold nanostars (GNS) obtained using Triton X-100 in a seed-growth synthesis. They have the uncommon feature of three localized surface plasmon resonances. The strongest LSPRs fall in two ranges, one in the 600–900 nm range (LSPR 2) and the other one in the 1,100–1,600 nm range (LSPR 3), both sensible to refractive index changes. Anyway, due to the extremely strong attenuation (>102 dB/m) of the employed POF in the 1,100–1,600 nm range, only LSPR 2 will be exploited for refractive index change measurements, useful for bio-chemical sensing applications, as a proof of principle of the possibility of realizing a compact, low cost and easy-to-use GNS based device.
Sensors | 2015
Nunzio Cennamo; Letizia De Maria; Girolamo D'Agostino; Luigi Zeni; Maria Pesavento
In this work an innovative, miniaturized and low cost optical chemical sensor (POF-MIP platform), based on a molecular imprinted polymer (MIP) and surface plasmon resonance in a plastic optical fiber (POF), is presented and preliminarily tested for monitoring of furfural (furan-2-carbaldehyde) in transformer oil. To this end, the optical platform was coupled to an MIP layer, highly selective for furfural. The ability of the developed sensor to directly detect furfural in the insulating oil was investigated. The detection limit of the sensor has been found to be 9 ppb, with a linear response up to about 30 ppb. However there is a sensible response up to 0.15 ppm. Because of the small linearity range, the Hill equation is suggested for the quantification. The sensor has been effectively tested in real oil samples collected from aged electrical equipment removed from service. The assessed concentration of furfural is in good agreement with that evaluated by a high pressure liquid chromatography (HLPC) method, confirming the good selectivity of the proposed sensor.
Superconductor Science and Technology | 2011
D Stornaiuolo; G. Papari; Nunzio Cennamo; F. Carillo; L. Longobardi; Davide Massarotti; A Barone; Francesco Tafuri
We have extended the off-axis biepitaxial technique to produce YBCO grain boundary junctions on low loss substrates. Excellent transport properties have been reproducibly found, with remarkable values of the quality factor IcRn (with Ic the critical current and Rn the normal state resistance) above 10 mV, far higher than the values commonly reported in the literature for high temperature superconductor (HTS) based Josephson junctions. The outcomes are consistent with a picture of a more uniform grain boundary region along the current path. This work supports a possible implementation of grain boundary junctions for various applications including terahertz sensors and HTS quantum circuits in the presence of microwaves.
Journal of Biophotonics | 2016
Ayda Aray; Francesco Chiavaioli; Mojtaba Arjmand; Cosimo Trono; Sara Tombelli; Ambra Giannetti; Nunzio Cennamo; M. Soltanolkotabi; Luigi Zeni; Francesco Baldini
A plastic optical fibre biosensor based on surface plasmon resonance for the detection of C-reactive protein (CRP) in serum is proposed. The biosensor was integrated into a home-made thermo-stabilized microfluidic system that allows avoiding any thermal and/or mechanical fluctuation and maintaining the best stable conditions during the measurements. A working range of 0.006-70 mg L-1 and a limit of detection of 0.009 mg L-1 were achieved. These results are among the best compared to other SPR-based biosensors for CRP detection, especially considering that they were achieved in a real and complex medium, i.e. serum. In addition, since the sensor performances satisfy those requested in physiologically-relevant clinical applications, the whole biosensing platform could well address high sensitive, easy to realize, real-time, label-free, portable and low cost diagnosis of CRP for future lab-on-a-chip applications. 3D sketch (left) of the thermo-stabilized home-made flow cell developed to house the SPR-based plastic optical fibre biosensor. Exemplary response curve (shift of the SPR wavelength versus time) of the proposed biosensor (right) for the detection of C-reactive protein in serum.
Sensors | 2007
Viviana Scognamiglio; Vincenzo Aurilia; Nunzio Cennamo; Paola Ringhieri; Luisa Iozzino; Micaela Tartaglia; Maria Staiano; Giuseppe Ruggiero; Pierangelo Orlando; Tullio Labella; Luigi Zeni; Annalisa Vitale; Sabato D’Auria
D-Galactose/D-glucose-binding protein from E. coli (GGBP) is a monomer that binds glucose with high affinity. The protein structure of GGBP is organized in two principal domains linked by a hinge region that form the sugar-binding site. In this work we show that the mutant form of GGBP at the amino acid position 182 can be utilized as a probe for the development of a non-consuming analyte fluorescence biosensor to monitor the glucose level in diabetes health care.
Sensors | 2014
Nunzio Cennamo; Giancarla Alberti; Maria Pesavento; Girolamo D'Agostino; Federico Quattrini; Raffaela Biesuz; Luigi Zeni
A simple, small size, and low cost sensor based on a Deferoxamine Self Assembled Monolayer (DFO-SAM) and Surface Plasmon Resonance (SPR) transduction, in connection with a Plastic Optical Fiber (POF), has been developed for the selective detection of Fe(III). DFO-SAM sensors based on appropriate electrochemical techniques can be frequently found in the scientific literature. In this work, we present the first example of a DFO-SAM sensor based on SPR in an optical fiber. The SPR sensing platform was realized by removing the cladding of a plastic optical fiber along half the circumference, spin coating a buffer of Microposit S1813 photoresist on the exposed core, and finally sputtering a thin gold film. The hydroxamate siderophore deferoxamine (DFO), having high binding affinity for Fe(III), is then used in its immobilized form, as self-assembled monolayer on the gold layer surface of the POF sensor. The results showed that the DFO-SAM-POF-sensor was able to sense the formation of the Fe(III)/DFO complex in the range of concentrations between 1 μm and 50 μm with a linearity range from 0 to 30 μm of Fe(III). The selectivity of the sensor was also proved by interference tests.