Nupur Raychaudhuri
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nupur Raychaudhuri.
Journal of Biological Chemistry | 2008
Nupur Raychaudhuri; Santanu Raychaudhuri; Manikkavasagar Thamotharan; Sherin U. Devaskar
We examined transcriptional and epigenetic mechanism(s) behind diminished skeletal muscle GLUT4 mRNA in intrauterine growth-restricted (IUGR) female rat offspring. An increase in MEF2D (inhibitor) with a decline in MEF2A (activator) and MyoD (co-activator) binding to the glut4 promoter in IUGR versus control was observed. The functional role of MEF2/MyoD-binding sites and neighboring three CpG clusters in glut4 gene transcription was confirmed in C2C12 muscle cells. No differential methylation of these three and other CpG clusters in the glut4 promoter occurred. DNA methyltransferase 1 (DNMT1) in postnatal, DNMT3a, and DNMT3b in adult was differentially recruited with increased MeCP2 (methyl CpG-binding protein) concentrations to bind the IUGR glut4 gene. Covalent modifications of the histone (H) code consisted of H3.K14 de-acetylation by recruitment of histone deacetylase (HDAC) 1 and enhanced association of HDAC4 enzymes. This set the stage for Suv39H1 methylase-mediated di-methylation of H3.K9 and increased recruitment of heterochromatin protein 1α, which partially inactivates postnatal and adult IUGR glut4 gene transcription. Further increased interactions in the adult IUGR between DNMT3a/DNMT3b and HDAC1 and MEF2D and HDAC1/HDAC4 and decreased association between MyoD and MEF2A existed. We conclude that epigenetic mechanisms consisting of histone code modifications repress skeletal muscle glut4 transcription in the postnatal period and persist in the adult female IUGR offspring.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Roshini Fernando; Stephen J. Atkins; Nupur Raychaudhuri; Ying Lu; Bin Li; Raymond S. Douglas; Terry J. Smith
Thyroglobulin (Tg) is the macromolecular precursor of thyroid hormones and is thought to be uniquely expressed by thyroid epithelial cells. Tg and the thyroid-stimulating hormone receptor (TSHR) are targets for autoantibody generation in the autoimmune disorder Graves disease (GD). Fully expressed GD is characterized by thyroid overactivity and orbital tissue inflammation and remodeling. This process is known as thyroid-associated ophthalmopathy (TAO). Early reports suggested that in TAO, both Tg and TSHR become overexpressed in orbital tissues. Previously, we found that CD34+ progenitor cells, known as fibrocytes, express functional TSHR, infiltrate the orbit, and comprise a large subset of orbital fibroblasts in TAO. We now report that fibrocytes also express Tg, which resolves as a 305-kDa protein on Western blots. It can be immunoprecipitated with anti-Tg Abs. Further, 125iodine and [35S]methionine are incorporated into Tg expressed by fibrocytes. De novo Tg synthesis is attenuated with a specific small interfering RNA targeting the protein. A fragment of the Tg gene promoter fused to a luciferase reporter exhibits substantial activity when transfected into fibrocytes. Unlike fibrocytes, GD orbital fibroblasts, which comprise a mixture of CD34+ and CD34− cells, express much lower levels of Tg and TSHR. When sorted into pure CD34+ and CD34− subsets, Tg and TSHR mRNA levels become substantially higher in CD34+ cells. These findings indicate that human fibrocytes express multiple “thyroid-specific” proteins, the levels of which are reduced after they infiltrate tissue. Our observations establish the basis for Tg accumulation in orbital GD.
Journal of Biological Chemistry | 2004
Augustine Rajakumar; Shanthie Thamotharan; Nupur Raychaudhuri; Ram K. Menon; Sherin U. Devaskar
The murine facilitative glucose transporter isoform 3 is developmentally regulated and is predominantly expressed in neurons. By employing the primer extension assay, the transcription start site of the murine Glut 3 gene in the brain was localized to -305 bp 5′ to the ATG translation start codon. Transient transfection assays in N2A neuroblasts using murine GLUT3-luciferase reporter constructs mapped enhancer activities to two regions located at -203 to -177 and -104 to -29 bp flanking a previously described repressor element (-137 to -130 bp). Dephosphorylated Sp1 and Sp3 proteins from the 1- and 21-day-old mouse brain nuclear extracts bound the repressor elements, whereas both dephosphorylated and phosphorylated cAMP-response element-binding protein (CREB) in N2A, 1- and 21-day-old mouse brain nuclear extracts bound the 5′-enhancer cis-elements (-187 to -180 bp) of the Glut 3 gene, and the Y box protein MSY-1 bound the sense strand of the -83- to -69-bp region. Sp3, CREB, and MSY-1 binding to the GLUT 3 DNA was confirmed by the chromatin immunoprecipitation assay, whereas CREB and MSY-1 interaction was detected by the co-immunoprecipitation assay. Furthermore, small interference RNA targeted at CREB in N2A cells decreased endogenous CREB concentrations, and CREB mediated GLUT 3 transcription. Thus, in the murine brain similar to the N2A cells, phosphorylated CREB and MSY-1 bound the Glut 3 gene trans-activating the expression in neurons, whereas Sp1/Sp3 bound the repressor elements. We speculate that phosphorylated CREB and Sp3 also interacted to bring about GLUT 3 expression in response to development/cell differentiation and neurotransmission.
PLOS ONE | 2013
Nupur Raychaudhuri; Roshini Fernando; Terry J. Smith
IL-6 plays diverse roles in normal and disease-associated immunity such as that associated with Graves’ disease (GD). In that syndrome, the orbit undergoes remodeling during a process known as thyroid-associated ophthalmopathy (TAO). Recently, CD34+ fibrocytes were found to infiltrate the orbit in TAO where they transition into CD34+ orbital fibroblasts. Surprisingly, fibrocytes display high levels of functional thyrotropin receptor (TSHR), the central antigen in GD. We report here that TSH and the pathogenic anti-TSHR antibodies that drive hyperthyroidism in GD induce IL-6 expression in fibrocytes and orbital fibroblasts. Unlike TSHR signaling in thyroid epithelium, that occurring in fibrocytes is completely independent of adenylate cyclase activation and cAMP generation. Instead TSH activates PDK1 and both AKT/PKB and PKC pathways. Expression and use of PKCβII switches to that of PKCµ as fibrocytes transition to TAO orbital fibroblasts. This shift is imposed by CD34− orbital fibroblasts but reverts when CD34+ fibroblasts are isolated. The up-regulation of IL-6 by TSH results from coordinately enhanced IL-6 gene promoter activity and increased IL-6 mRNA stability. TSH-dependent IL-6 expression requires activity at both CREB (−213 to −208 nt) and NF-κB (–78 to −62 nt) binding sites. These results provide novel insights into the molecular action of TSH and signaling downstream for TSHR in non-thyroid cells. Fibrocytes neither express adenylate cyclase nor generate cAMP and thus these findings are free from any influence of cAMP-related signaling. They identify potential therapeutic targets for TAO.
PLOS ONE | 2016
Tünde Mester; Nupur Raychaudhuri; Erin F. Gillespie; Hong Chen; Terry J. Smith; Raymond S. Douglas
Context Fibrocytes appear to participate in inflammation and tissue remodeling in patients with thyroid-associated ophthalmopathy (TAO). These patients have increased frequencies of circulating TSH receptor (TSHR)- and CD40-positive fibrocytes, suggesting TSHR and CD40 may play roles in proinflammatory cytokine production, which ultimately leads to orbital inflammation and tissue remodeling. Objective To investigate the potential interactions between the TSHR and CD40 signaling pathways and their roles in IL-6 and TNF-α production. Design and Outcome Measures CD40 expression on fibrocytes was assessed using flow cytometry; IL-6 and TNF-α protein release using Luminex technology; increased IL-6 and TNF-α mRNA abundance, using real-time PCR; TSH- and CD40 ligand (CD40L)-stimulated Akt phosphorylation in fibrocytes, by western blot analysis; TSHR-CD40 protein-protein interaction, using co-immunoprecipitation, and CD40-TSHR co-localization, using immunocytochemistry. Results TSH enhances CD40 expression at a pre-translational level in fibrocytes. Production of IL-6 and TNF-α after costimulation with TSH and CD40L was greater than that after TSH or CD40L stimulation alone. TSH and CD40L costimulation also resulted in greater Akt phosphorylation. Akt and nuclear factor (NF)-κB inhibitors significantly reduced cytokine production after TSH and CD40L costimulation. TSHR and CD40L are colocalized on the cell surface and form a complex. Conclusions TSHR and CD40 in fibrocytes appear to be physically and functionally related. TSH stimulates CD40 production on the fibrocyte surface. Cytokine expression upon simultaneous stimulation of TSHR and CD40 is greater than levels achieved with TSH or CD40L alone. Increased expression of CD40 by TSH is a potential mechanism for this process.
The Journal of Clinical Endocrinology and Metabolism | 2012
Erin F. Gillespie; Konstantinos I. Papageorgiou; Roshini Fernando; Nupur Raychaudhuri; Kimberly P. Cockerham; Laya K. Charara; Allan C.P. Goncalves; Shuang Xia Zhao; Anna Ginter; Ying Lu; Terry J. Smith; Raymond S. Douglas
The Journal of Clinical Endocrinology and Metabolism | 2014
Hong Chen; Tünde Mester; Nupur Raychaudhuri; Courtney Y. Kauh; Shivani Gupta; Terry J. Smith; Raymond S. Douglas
The Journal of Clinical Endocrinology and Metabolism | 2011
Terry J. Smith; Dolly A. Padovani-Claudio; Ying Lu; Nupur Raychaudhuri; Roshini Fernando; Stephen J. Atkins; Erin F. Gillespie; Andrew G. Gianoukakis; Barbra S. Miller; Paul G. Gauger; Gerard M. Doherty; Raymond S. Douglas
Investigative Ophthalmology & Visual Science | 2012
Erin F. Gillespie; Nupur Raychaudhuri; Konstantinos I. Papageorgiou; Stephen J. Atkins; Ying Lu; Laya K. Charara; Tünde Mester; Terry J. Smith; Raymond S. Douglas
PLOS ONE | 2010
Nupur Raychaudhuri; Raymond S. Douglas; Terry J. Smith