Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nur Hidayatul Nazirah Kamarudin is active.

Publication


Featured researches published by Nur Hidayatul Nazirah Kamarudin.


Bioresource Technology | 2012

Utilization of bivalve shell-treated Zea mays L. (maize) husk leaf as a low-cost biosorbent for enhanced adsorption of malachite green

Aishah Abdul Jalil; Sugeng Triwahyono; M.R. Yaakob; Z.Z.A. Azmi; Norzahir Sapawe; Nur Hidayatul Nazirah Kamarudin; H.D. Setiabudi; Nur Farhana Jaafar; S.M. Sidik; S. H. Adam; B.H. Hameed

In this work, two low-cost wastes, bivalve shell (BS) and Zea mays L. husk leaf (ZHL), were investigated to adsorb malachite green (MG) from aqueous solutions. The ZHL was treated with calcined BS to give the BS-ZHL, and its ability to adsorb MG was compared with untreated ZHL, calcined BS and Ca(OH)(2)-treated ZHL under several different conditions: pH (2-8), adsorbent dosage (0.25-2.5 g L(-1)), contact time (10-30 min), initial MG concentration (10-200 mg L(-1)) and temperature (303-323 K). The equilibrium studies indicated that the experimental data were in agreement with the Langmuir isotherm model. The use of 2.5 g L(-1) BS-ZHL resulted in the nearly complete removal of 200 mg L(-1) of MG with a maximum adsorption capacity of 81.5 mg g(-1) after 30 min of contact time at pH 6 and 323 K. The results indicated that the BS-ZHL can be used to effectively remove MG from aqueous media.


Journal of Colloid and Interface Science | 2012

Amino modified mesostructured silica nanoparticles for efficient adsorption of methylene blue

Ainul Hakimah Karim; Aishah Abdul Jalil; Sugeng Triwahyono; S.M. Sidik; Nur Hidayatul Nazirah Kamarudin; R. Jusoh; Norela Jusoh; B.H. Hameed

In this work, mesostructured silica nanoparticles (MSN(AP)) with high adsorptivity were prepared by a modification with 3-aminopropyl triethoxysilane (APTES) as a pore expander. The performance of the MSN(AP) was tested by the adsorption of MB in a batch system under varying pH (2-11), adsorbent dosage (0.1-0.5 g L(-1)), and initial MB concentration (5-60 mg L(-1)). The best conditions were achieved at pH 7 when using 0.1 g L(-1) MSN(AP) and 60 mg L(-1)MB to give a maximum monolayer adsorption capacity of 500.1 mg g(-1) at 303 K. The equilibrium data were evaluated using the Langmuir, Freundlich, Temkin, and Harkins-Jura isotherms and fit well to the Freundlich isotherm model. The adsorption kinetics was best described by the pseudo-second order model. The results indicate the potential for a new use of mesostructured materials as an effective adsorbent for MB.


Journal of Colloid and Interface Science | 2014

Variation of the crystal growth of mesoporous silica nanoparticles and the evaluation to ibuprofen loading and release.

Nur Hidayatul Nazirah Kamarudin; Aishah Abdul Jalil; Sugeng Triwahyono; V. Artika; Norashikin F. M. Salleh; Ainul Hakimah Karim; Nur Farhana Jaafar; Mohammad Reza Sazegar; Rino R. Mukti; B.H. Hameed; Anwar Johari

Mesoporous silica nanoparticles (MSNs) were synthesized with variable microwave power in the range of 100-450 W, and the resulting enhancement of MSN crystal growth was evaluated for the adsorption and release of ibuprofen. X-ray diffraction (XRD) revealed that the MSN prepared under the highest microwave power (MSN450) produced the most crystallized and prominent mesoporous structure. Enhancement of the crystal growth improved the hexagonal order and range of silica, which led to greater surface area, pore width and pore volume. MSN450 exhibited higher ibuprofen adsorption (98.3 mg/g), followed by MSN300(81.3 mg/g) and MSN100(74.1 mg/g), confirming that more crystallized MSN demonstrated higher adsorptivity toward ibuprofen. Significantly, MSN450 also contained more hydroxyl groups that provided more adsorption sites. In addition, MSN450 exhibited comparable ibuprofen adsorption with conventionally synthesized MSN, indicating the potential of microwave treatment in the synthesis of related porous materials. In vitro drug release was also investigated with simulated biological fluids and the kinetics was studied under different pH conditions. MSN450 showed the slowest release rate of ibuprofen, followed by MSN300 and MSN100. This was due to the wide pore diameter and longer range of silica order of the MSN450. Ibuprofen release from MSN450 at pH 5 and 7 was found to obey a zero-order kinetic model, while release at pH 2 followed the Kosmeyer-Peppas model.


RSC Advances | 2015

Synthesis of dual type Fe species supported mesostructured silica nanoparticles: Synergistical effects in photocatalytic activity

Rabia'tun Hidayah Jusoh; Aishah Abdul Jalil; Sugeng Triwahyono; Nur Hidayatul Nazirah Kamarudin

Dual type Fe species (isomorphously substituted Fe species and a colloidal α-FeOOH (IS-FeOOH)) supported on mesostructured silica nanoparticles (IS-FeOOH/MSN) were prepared by a simple electrochemical method followed by impregnation. Characterization was conducted using X-ray diffraction, transmission electron microscopy, surface area analysis, Fourier-transform infrared spectroscopy, nuclear magnetic resonance, electron spin resonance, and X-ray photoelectron spectroscopy. The results suggested that silica removal occurred in the MSN framework to isomorphously substitute Fe cations while retaining the colloidal structure of IS-FeOOH. The catalytic activity of IS-FeOOH/MSN was tested on photo-Fenton-like degradation of 2-chlorophenol under fluorescent light irradiation. The performance of the catalyst was in the following order: 10 wt% IS-FeOOH/MSN > 15 wt% IS-FeOOH/MSN > 5 wt% IS-FeOOH/MSN > MSN, with removal percentages of 92.2, 79.3, 73.1, and 14.2%, respectively. The results suggest that a synergistic effect between the dual type of Fe species (Si–O–Fe and IS-FeOOH colloid) and MSN played important roles in enhancing the degradation. The results provide strong evidence to support the potential use of IS-FeOOH/MSN as a photo-Fenton-like nanocatalyst for organic pollutants treatment.


Journal of Colloid and Interface Science | 2014

Influence of multi-walled carbon nanotubes on textural and adsorption characteristics of in situ synthesized mesostructured silica.

Ainul Hakimah Karim; Aishah Abdul Jalil; Sugeng Triwahyono; Nur Hidayatul Nazirah Kamarudin; Adnan Ripin

Carbon nanotubes-mesostructured silica nanoparticles (CNT-MSN) composites were prepared by a simple one step method with various loading of CNT. Their surface properties were characterized by XRD, N2 physisorption, TEM and FTIR, while the adsorption performance of the CNT-MSN composites were evaluated on the adsorption of methylene blue (MB) while varying the pH, adsorbent dosage, initial MB concentration, and temperature. The CNTs were found to improve the physicochemical properties of the MSN and led to an enhanced adsorptivity for MB. N2 physisorption measurements revealed the development of a bimodal pore structure that increased the pore size, pore volume and surface area. Accordingly, 0.05 g L(-1) CNT-MSN was able to adsorb 524 mg g(-1) (qm) of 60 mg L(-1) MB at pH 8 and 303 K. The equilibrium data were evaluated using the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models, with the Langmuir model affording the best fit to the adsorption data. The adsorption kinetics were best described by the pseudo-first order model. These results indicate the potential of CNT-MSN composites as effective new adsorbents for dye adsorption.


RSC Advances | 2015

Elucidation of acid strength effect on ibuprofen adsorption and release by aluminated mesoporous silica nanoparticles

Nur Hidayatul Nazirah Kamarudin; Aishah Abdul Jalil; Sugeng Triwahyono; Mohammad Reza Sazegar; Salehhuddin Hamdan; Sayang Baba; Arshad Ahmad

Mesoporous silica nanoparticles (MSN) with 1–10 wt% loading of aluminum (Al) were prepared and characterized by XRD, N2 physisorption, 29Si and 27Al NMR, FT-IR and FT-IR preadsorbed pyridine. All samples were evaluated for ibuprofen adsorption and release. The results showed that MSN gave almost complete ibuprofen adsorption while the addition of 1, 5, and 10 wt% Al onto MSN (1Al-MSN, 5Al-MSN and 10Al-MSN) resulted in 35%, 58%, and 79% of adsorption, respectively. The characterization results elucidated that the highest adsorptivity of MSN was due to its highest surface silanol groups, while the increase in Bronsted acidity upon loading of Al provided more adsorption sites for the higher activity. Regardless of its highest adsorption capacity, MSN demonstrated the highest and fastest release (∼100%) in 10 h, followed by 1Al-MSN, 5Al-MSN and 10Al-MSN. The increase in Al loading increased the acid sites that hold the ibuprofen molecules, which raised the retention in ibuprofen release. The pKa of Si–OH–Al that is lower than Si–OH sites also attracted the ibuprofen more strongly, which resulted in the slower release of Al-MSN as compared to MSN. The cytotoxicity study exhibited that ibuprofen loaded Al-MSN was able to reduce the toxicity in the WRL-68 cells, verifying its ability to hold and slow the release of ibuprofen as well as minimize the risk of drug overdose.


Journal of Natural Gas Chemistry | 2011

Effect of iridium loading on HZSM-5 for isomerization of n-heptane

H.D. Setiabudi; Sugeng Triwahyono; Aishah Abdul Jalil; Nur Hidayatul Nazirah Kamarudin; Muhammad Arif Ab. Aziz

Abstract The effect of iridium loading on the properties and catalytic isomerization of n-heptane over Ir-HZSM-5 is studied. Ir-HZSM-5 was prepared by impregnation method and subjected to isomerization process in the presence of flowing hydrogen gas. XRD and BET studies show that the presence of iridium stabilizes the crystalline structure of HZSM-5, leading to more ordered framework structure and larger surface area. TGA and FTIR results substantiate that iridium species interacts with OH group on the surface of HZSM-5. Pyridine FT-IR study verifies the interaction between iridium and surface OH group slightly increased the Bronsted and Lewis acid sites without changing the lattice structure of HZSM-5. The presence of iridium and the increase of strong Lewis acid sites on HZSM-5 were found to bring an increase about 4.1%, 33.2% and 11.8% in conversion, selectivity and yield of n-heptane isomerization, respectively.


RSC Advances | 2016

Catalyzed Claisen–Schmidt reaction by protonated aluminate mesoporous silica nanomaterial focused on the (E)-chalcone synthesis as a biologically active compound

Mohammad Reza Sazegar; Shaya Mahmoudian; Ali Mahmoudi; Sugeng Triwahyono; Aishah Abdul Jalil; Rino R. Mukti; Nur Hidayatul Nazirah Kamarudin; Monir Kalantar Ghoreishi

The mesoporous silica structure (MSN) was synthesized using the sol–gel method followed by aluminum grafting and protonation and was then denoted as HAlMSN (Si/Al = 18.9). N2 physisorption confirmed the mesoporous structure with a pore diameter of 3.38 nm. 27Al NMR showed the presence of framework and extra-framework aluminum structures, which led to the formation of strong Lewis and Bronsted acidic sites. HAlMSN catalyzed the synthesis of (E)-chalcones through the Claisen–Schmidt reaction. Chalcone derivatives have been applied as biologically active compounds with anti-cancer, anti-inflammatory and diuretic pharmacological activities. The products were obtained via reactions on the protonic acid sites of HAlMSN. The significant advantages of this reaction are high yield, easy work up, short reaction time and also compatibility with various organic solvents. The products were obtained in an excellent conversion of 97% at 298 K. The results show that the electron donating substituents exhibit higher conversion in comparison to electron withdrawing substituents. The stability of the catalyst was investigated by reusing it five times for (E)-chalcone production and there was only a slight decrease in its catalytic activity. The highest product of (E)-chalcone was observed with a 1 : 2 molar ratio of benzaldehyde/acetophenone. A comparative study in chalcone synthesis using the heterogeneous catalysts demonstrated that HAlMSN has a significantly high activity at low temperature.


Microporous and Mesoporous Materials | 2013

Role of 3-aminopropyltriethoxysilane in the preparation of mesoporous silica nanoparticles for ibuprofen delivery: Effect on physicochemical properties

Nur Hidayatul Nazirah Kamarudin; Aishah Abdul Jalil; Sugeng Triwahyono; Nur Fatien Muhamad Salleh; Ainul Hakimah Karim; Rino R. Mukti; B.H. Hameed; Arshad Ahmad


Applied Catalysis A-general | 2013

Sequential desilication-isomorphous substitution route to prepare mesostructured silica nanoparticles loaded with ZnO and their photocatalytic activity

Norela Jusoh; Aishah Abdul Jalil; Sugeng Triwahyono; H.D. Setiabudi; Norzahir Sapawe; M.A.H. Satar; Ainul Hakimah Karim; Nur Hidayatul Nazirah Kamarudin; R. Jusoh; Nur Farhana Jaafar; N. Salamun; Jon Efendi

Collaboration


Dive into the Nur Hidayatul Nazirah Kamarudin's collaboration.

Top Co-Authors

Avatar

Sugeng Triwahyono

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar

Aishah Abdul Jalil

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar

Aishah Abd. Jalil

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar

H.D. Setiabudi

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar

S. H. Adam

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar

Ainul Hakimah Karim

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar

Madzlan Aziz

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rino R. Mukti

Bandung Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge