Nur Imma Fatimah Harahap
Kobe University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nur Imma Fatimah Harahap.
Annals of Human Genetics | 2013
Dian Kesumapramudya Nurputra; Poh San Lai; Nur Imma Fatimah Harahap; Satoru Morikawa; Tomoto Yamamoto; Noriyuki Nishimura; Yuji Kubo; Atsuko Takeuchi; Toshio Saito; Yasuhiro Takeshima; Yumi Tohyama; Stacey K.H. Tay; Poh Sim Low; Kayoko Saito; Hisahide Nishio
Spinal muscular atrophy (SMA) is a common neuromuscular disorder with autosomal recessive inheritance, resulting in the degeneration of motor neurons. The incidence of the disease has been estimated at 1 in 6000–10,000 newborns with a carrier frequency of 1 in 40–60. SMA is caused by mutations of the SMN1 gene, located on chromosome 5q13. The gene product, survival motor neuron (SMN) plays critical roles in a variety of cellular activities. SMN2, a homologue of SMN1, is retained in all SMA patients and generates low levels of SMN, but does not compensate for the mutated SMN1. Genetic analysis demonstrates the presence of homozygous deletion of SMN1 in most patients, and allows screening of heterozygous carriers in affected families. Considering high incidence of carrier frequency in SMA, population‐wide newborn and carrier screening has been proposed. Although no effective treatment is currently available, some treatment strategies have already been developed based on the molecular pathophysiology of this disease. Current treatment strategies can be classified into three major groups: SMN2‐targeting, SMN1‐introduction, and non‐SMN targeting. Here, we provide a comprehensive and up‐to‐date review integrating advances in molecular pathophysiology and diagnostic testing with therapeutic developments for this disease including promising candidates from recent clinical trials.
Genetic Testing and Molecular Biomarkers | 2012
Nur Imma Fatimah Harahap; Indra Sari Kusuma Harahap; Richard Hideki Kaszynski; Dian Kesumapramudya Nurputra; Tri Budi Hartomo; Huyen Thi Van Pham; Tomoto Yamamoto; Satoru Morikawa; Noriyuki Nishimura; Imam Rusdi; Retno Widiastuti; Hisahide Nishio
AIM Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disorder. It is caused by mutations in the SMN1, and its clinical severity is modified by copy number variations of the SMN2. According to previous studies, deletion of SMN1 exon 7 is the most frequently observed in patients with SMA. Therefore, molecular analyses exploiting this genetic lesion could be beneficial in the diagnosis of SMA. Unfortunately, in many geographical regions, physicians do not have the latest molecular screening technologies at their immediate disposal. Thus, to overcome this issue, we developed an SMA-diagnosing system using dried blood spots (DBS) placed on filter paper to facilitate remote diagnosis. METHODS In this study, we validate the applicability of DBS on Flinders Technology Associates (FTA) filter paper for detecting SMN1 exon 7 deletions and copy number variations of SMN1 and SMN2. To detect exon 7 deletions in SMN1, polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis was conducted by using DNA extracted from the DBS on FTA filter paper that had been stored at room temperature for a period of up to 4 years. To determine the copy numbers of SMN1 and SMN2, we carried out SYBR green-based real-time PCR by using the same blood specimens. RESULTS The results obtained from the DBS on FTA filter paper were in complete concordance with those analyses using fresh blood specimens. This indicates that DBS on filter papers is a reliable method for SMA patient detection and carrier screenings. CONCLUSION The SMA-diagnosing system, combined with the mailing of DBS on filter paper, will be beneficial for patients suffering from neuromuscular disorders in areas with limited or no access to diagnostic facilities with molecular capabilities.
Biochemistry and biophysics reports | 2015
Nur Imma Fatimah Harahap; Dian Kesumapramudya Nurputra; Mawaddah Ar Rochmah; Ai Shima; Naoya Morisada; Toru Takarada; Atsuko Takeuchi; Yumi Tohyama; Shinichiro Yanagisawa; Hisahide Nishio
Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disorder that is currently incurable. SMA is caused by decreased levels of the survival motor neuron protein (SMN), as a result of loss or mutation of SMN1. Although the SMN1 homolog SMN2 also produces some SMN protein, it does not fully compensate for the loss or dysfunction of SMN1. Salbutamol, a β2-adrenergic receptor agonist and well-known bronchodilator used in asthma patients, has recently been shown to ameliorate symptoms in SMA patients. However, the precise mechanism of salbutamol action is unclear. We treated SMA fibroblast cells lacking SMN1 and HeLa cells with salbutamol and analyzed SMN2 mRNA and SMN protein levels in SMA fibroblasts, and changes in SMN protein ubiquitination in HeLa cells. Salbutamol increased SMN protein levels in a dose-dependent manner in SMA fibroblast cells lacking SMN1, though no significant changes in SMN2 mRNA levels were observed. Notably, the salbutamol-induced increase in SMN was blocked by a protein kinase A (PKA) inhibitor and deubiquitinase inhibitor, respectively. Co-immunoprecipitation assay using HeLa cells showed that ubiquitinated SMN levels decreased in the presence of salbutamol, suggesting that salbutamol inhibited ubiquitination. The results of this study suggest that salbutamol may increase SMN protein levels in SMA by inhibiting ubiquitin-mediated SMN degradation via activating β2-adrenergic receptor-PKA pathways.
Human genome variation | 2016
Satomi Yoshimoto; Nur Imma Fatimah Harahap; Yuko Hamamura; Mawaddah Ar Rochmah; Ai Shima; Naoya Morisada; Masakazu Shinohara; Toshio Saito; Kayoko Saito; Poh San Lai; Masafumi Matsuo; Hiroyuki Awano; Ichiro Morioka; Kazumoto Iijima; Hisahide Nishio
Both survival of motor neuron (SMN) genes are associated with spinal muscular atrophy; mutations in SMN1 cause the disease, and SMN2 modulates its severity. It is established that different alternative splicing of exon 7 occurs for SMN1 and SMN2, and a cryptic exon was recently found in intron 6 of both genes. Here, we characterize this cryptic exon and clarify its alternative splicing pattern in control and spinal muscular atrophy cells.
Pediatric Neurology | 2015
Hiroyuki Yamada; Yoshinobu Nishida; Toshiro Maihara; Nihayatus Sa'adah; Nur Imma Fatimah Harahap; Dian Kesumapramudya Nurputra; Mawaddah Ar Rochmah; Noriyuki Nishimura; Toshio Saito; Yuji Kubo; Kayoko Saito; Hisahide Nishio
BACKGROUND Spinal muscular atrophy is caused by survival motor neuron gene SMN1 mutations. SMN1 produces a full-length SMN1 protein isoform encoded by exons 1-7, and an axonal-SMN protein isoform encoded by exons 1-3 and intron 3. The axonal-SMN protein is expressed only in the embryonic period and plays a significant role in axonal growth. However, there has been no report on contribution of axonal-SMN to spinal muscular atrophy severity until now. PATIENTS Two Japanese boys with spinal muscular atrophy type 1 in our study presented with generalized muscle weakness and respiratory insufficiency soon after birth and required an artificial ventilator from early infancy. Patient 1 was compound heterozygous for two SMN1 mutations, whole-gene deletion, and an intragenic mutation (c.819_820insT). He retained one copy of SMN1 producing the N-terminal part of SMN1 including axonal-SMN. On the other hand, patient 2 was homozygous for SMN1 deletion. Both of them showed the same copy number of spinal muscular atrophy-modifying genes, NAIP and SMN2. These findings suggested that the C-terminal domain of full-length SMN1 determined the severity, irrespective of presence or absence of axonal-SMN expression. CONCLUSION In patient 1, the C-terminal domain of full-length SMN1 determined spinal muscular atrophy severity, rather than the axonal-SMN, one copy of which could be present and intact. The presence or absence of axonal-SMN may not impact disease severity in spinal muscular atrophy type 1 patients.
Brain & Development | 2017
Mawaddah Ar Rochmah; Hiroyuki Awano; Tomonari Awaya; Nur Imma Fatimah Harahap; Naoya Morisada; Yoshihiro Bouike; Toshio Saito; Yuji Kubo; Kayoko Saito; Poh San Lai; Ichiro Morioka; Kazumoto Iijima; Hisahide Nishio; Masakazu Shinohara
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder. Over 95% of SMA patients have homozygous deletions of the SMA-causative gene, SMN1. Thus, SMA carriers are usually diagnosed based on SMN1 copy number, with one copy indicating SMA carrier status. However, two SMN1 copies do not always exclude carrier status. In this study, we identified SMA carriers with two SMN1 copies. SUBJECTS AND METHODS From 33 families, 65 parents of genetically confirmed SMA patients were tested to determine SMA carrier status. Molecular genetic analyses, including multiplex ligation-dependent probe amplification (MLPA) assay, were performed using blood samples from family members. RESULTS Of the 65 parents, three parents from three families had two SMN1 copies. Accordingly, the frequency of carriers with two SMN1 copies was 4.6%. Two of these families were further studied. Patient 1 was homozygous for SMN1 deletion. Patient 1s mother had two SMN1 copies on one chromosome, with deletion of SMN1 on the other chromosome ([2+0] genotype). Patient 1 inherited SMN1-deleted chromosomes from both parents. Patient 2 was compound heterozygous for two SMN1 mutations: whole-gene deletion and intragenic missense mutation, c.826T>C (p.Tyr276His). Patient 2s father had two SMN1 copies with the same intragenic mutation in one copy ([1+1d] genotype, d intragenic mutation). Patient 2 inherited the chromosome with an SMN1 mutation from the father and SMN1-deleted chromosome from the mother. CONCLUSION SMA carriers with two SMN1 copies may be rare, but its possibility should be taken into consideration in carrier testing and counseling for SMA families or population-based carrier screening.
Brain & Development | 2017
Mawaddah Ar Rochmah; Nur Imma Fatimah Harahap; Emma Tabe Eko Niba; Kenta Nakanishi; Hiroyuki Awano; Ichiro Morioka; Kazumoto Iijima; Toshio Saito; Kayoko Saito; Poh San Lai; Yasuhiro Takeshima; Atsuko Takeuchi; Yoshihiro Bouike; Maya Okamoto; Hisahide Nishio; Masakazu Shinohara
BACKGROUND Spinal muscular atrophy (SMA) is a common neuromuscular disorder caused by mutations in SMN1. More than 95% of SMA patients carry homozygous SMN1 deletion. SMA is the leading genetic cause of infant death, and has been considered an incurable disease. However, a recent clinical trial with an antisense oligonucleotide drug has shown encouraging clinical efficacy. Thus, early and accurate detection of SMN1 deletion may improve prognosis of many infantile SMA patients. METHODS A total of 88 DNA samples (37 SMA patients, 12 carriers and 39 controls) from dried blood spots (DBS) on filter paper were analyzed. All participants had previously been screened for SMN genes by PCR restriction fragment length polymorphism (PCR-RFLP) using DNA extracted from freshly collected blood. DNA was extracted from DBS that had been stored at room temperature (20-25°C) for 1week to 5years. To ensure sufficient quality and quantity of DNA samples, target sequences were pre-amplified by conventional PCR. Real-time modified competitive oligonucleotide priming-PCR (mCOP-PCR) with the pre-amplified PCR products was performed for the gene-specific amplification of SMN1 and SMN2 exon 7. RESULTS Compared with PCR-RFLP using DNA from freshly collected blood, results from real-time mCOP-PCR using DBS-DNA for detection of SMN1 exon 7 deletion showed a sensitivity of 1.00 (CI [0.87, 1.00])] and specificity of 1.00 (CI [0.90, 1.00]), respectively. CONCLUSION We combined DNA extraction from DBS on filter paper, pre-amplification of target DNA, and real-time mCOP-PCR to specifically detect SMN1 and SMN2 genes, thereby establishing a rapid, accurate, and high-throughput system for detecting SMN1-deletion with practical applications for newborn screening.
Neurology and Clinical Neuroscience | 2015
Toshio Saito; Dian Kesumapramudya Nurputra; Nur Imma Fatimah Harahap; Indra Sari Kusuma Harahap; Hiroshi Yamamoto; Emi Muneshige; Hiroaki Nishizono; Tsuyoshi Matsumura; Harutoshi Fujimura; Saburo Sakoda; Kayoko Saito; Hisahide Nishio
Valproic acid (VPA) is expected to become an effective therapeutic agent for spinal muscular atrophy (SMA) because of its histone deacetylase inhibitor effect.
Brain & Development | 2015
Nur Imma Fatimah Harahap; Atsuko Takeuchi; Surini Yusoff; Koji Tominaga; Takeshi Okinaga; Yukihiro Kitai; Toru Takarada; Yuji Kubo; Kayoko Saito; Nihayatus Sa’adah; Dian Kesumapramudya Nurputra; Noriyuki Nishimura; Toshio Saito; Hisahide Nishio
BACKGROUND More than 90% of spinal muscular atrophy (SMA) patients show homozygous deletion of SMN1 (survival motor neuron 1). They retain SMN2, a highly homologous gene to SMN1, which may partially compensate for deletion of SMN1. Although the promoter sequences of these two genes are almost identical, a GCC insertion polymorphism has been identified at c.-320_-321 in the SMN1 promoter. We have also found this insertion polymorphism in an SMN2 promoter in an SMA patient (Patient A) who has SMA type 2/3. PURPOSE The aims of this study were to determine the frequency of the GCC insertion polymorphism in SMA patients, and to evaluate its effect on SMN transcription efficiency. PATIENTS AND METHODS Fifty-one SMA patients, including Patient A, were involved in this study. SMN2 transcript levels in white blood cells were measured by real-time polymerase chain reaction. Screening of the GCC insertion polymorphism was performed using denaturing high-pressure liquid chromatography. The transcription efficiency of the promoter with the insertion mutation was evaluated using a reporter-gene assay. RESULTS All SMA patients in this study were homozygous for SMN1 deletion. Patient A retained two copies of SMN2, and showed only a small amount of SMN2 transcript in white blood cells. We detected a GCC insertion polymorphism at c.-320_-321 only in Patient A, and not in 50 other SMA patients. The polymorphism had a slight but significant negative effect on transcription efficiency. DISCUSSION AND CONCLUSION Patient A was judged to be an exceptional case of SMA, because the GCC insertion polymorphism rarely exists in SMN1-deleted SMA patients. The GCC insertion polymorphism did not enhance the transcriptional efficiency of SMN2. Thus, this GCC insertion polymorphism in the SMN2 promoter may not be associated with the milder phenotype of the patient. Patient A suggests that there are other unknown factors modifying the clinical phenotype of SMA.
Brain & Development | 2018
Nur Imma Fatimah Harahap; Emma Tabe Eko Niba; Mawaddah Ar Rochmah; Yogik Onky Silvana Wijaya; Toshio Saito; Kayoko Saito; Hiroyuki Awano; Ichiro Morioka; Kazumoto Iijima; Poh San Lai; Masafumi Matsuo; Hisahide Nishio; Masakazu Shinohara
BACKGROUND The SMN genes, SMN1 and SMN2, are highly homologous genes which are related to the development or clinical severity of spinal muscular atrophy. Some alternative splicing patterns of the SMN genes have been well documented. In 2007, an SMN1 transcript with a full sequence of intron 3 was reported as the first intron-retained SMN transcript. METHODS Intron-retained SMN transcripts in various cells and tissues were studied using reverse transcription (RT)-PCR. HeLa cells were used for subcellular localization of the transcripts and protein expression analysis with Western blotting. RESULTS Two intron-retained SMN transcripts were detected, which contain full sequences of intron 2b or intron 3. These transcripts were produced from SMN1 and SMN2, and ubiquitously expressed in human cells and tissues. Western blotting analysis showed no proteins derived from the intron-retained transcripts. Fractionation analysis showed that these intron-retained transcripts were localized mainly in the nucleus. Contrary to our expectation, the intron-retained transcript levels decreased during the treatment of cycloheximide, an inhibitor of nonsense-mediated decay (NMD), suggesting that they were not targets of NMD. CONCLUSION Intron 2b-retained SMN transcript and intron3-retained SMN transcript were ubiquitously expressed in human cells and tissues. The intron-retained transcripts were mainly localized in the nucleus and decreased through non-NMD pathway.