Nur Sibel Gunay
University of Iowa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nur Sibel Gunay.
Nature Biotechnology | 2008
Marco Guerrini; Daniela Beccati; Zachary Shriver; Annamaria Naggi; Karthik Viswanathan; Antonella Bisio; Ishan Capila; Jonathan C. Lansing; Sara Guglieri; Blair A. Fraser; Ali Al-Hakim; Nur Sibel Gunay; Zhenqing Zhang; Luke N. Robinson; Lucinda F. Buhse; Moheb Nasr; Janet Woodcock; Robert Langer; Ganesh Venkataraman; Robert J. Linhardt; Benito Casu; Giangiacomo Torri; Ram Sasisekharan
Recently, certain lots of heparin have been associated with an acute, rapid onset of serious side effects indicative of an allergic-type reaction. To identify potential causes for this sudden rise in side effects, we examined lots of heparin that correlated with adverse events using orthogonal high-resolution analytical techniques. Through detailed structural analysis, the contaminant was found to contain a disaccharide repeat unit of glucuronic acid linked β1→3 to a β-N-acetylgalactosamine. The disaccharide unit has an unusual sulfation pattern and is sulfated at the 2-O and 3-O positions of the glucuronic acid as well as at the 4-O and 6-O positions of the galactosamine. Given the nature of this contaminant, traditional screening tests cannot differentiate between affected and unaffected lots. Our analysis suggests effective screening methods that can be used to determine whether or not heparin lots contain the contaminant reported here.
Biochemistry | 2001
Weijun Huang; Lorena Boju; Lydia Tkalec; Hongsheng Su; ∇ Hyun-Ok Yang; Nur Sibel Gunay; Robert J. Linhardt; Yeong Shik Kim; and Allan Matte; Miroslaw Cygler
The crystal structures of Flavobacterium heparinium chondroitin AC lyase (chondroitinase AC; EC 4.2.2.5) bound to dermatan sulfate hexasaccharide (DS(hexa)), tetrasaccharide (DS(tetra)), and hyaluronic acid tetrasaccharide (HA(tetra)) have been refined at 2.0, 2.0, and 2.1 A resolution, respectively. The structure of the Tyr234Phe mutant of AC lyase bound to a chondroitin sulfate tetrasaccharide (CS(tetra)) has also been determined to 2.3 A resolution. For each of these complexes, four (DS(hexa) and CS(tetra)) or two (DS(tetra) and HA(tetra)) ordered sugars are visible in electron density maps. The lyase AC DS(hexa) and CS(tetra) complexes reveal binding at four subsites, -2, -1, +1, and +2, within a narrow and shallow protein channel. We suggest that subsites -2 and -1 together represent the substrate recognition area, +1 is the catalytic subsite and +1 and +2 together represent the product release area. The putative catalytic site is located between the substrate recognition area and the product release area, carrying out catalysis at the +1 subsite. Four residues near the catalytic site, His225, Tyr234, Arg288, and Glu371 together form a catalytic tetrad. The mutations His225Ala, Tyr234Phe, Arg288Ala, and Arg292Ala, revealed residual activity for only the Arg292Ala mutant. Structural data indicate that Arg292 is primarily involved in recognition of the N-acetyl and sulfate moieties of galactosamine, but does not participate directly in catalysis. Candidates for the general base, removing the proton attached to C-5 of the glucuronic acid at the +1 subsite, are Tyr234, which could be transiently deprotonated during catalysis, or His225. Tyrosine 234 is a candidate to protonate the leaving group. Arginine 288 likely contributes to charge neutralization and stabilization of the enolate anion intermediate during catalysis.
Carbohydrate Research | 2002
Paul L. DeAngelis; Nur Sibel Gunay; Toshihiko Toida; Wenjun Mao; Robert J. Linhardt
Pasteurella multocida is a pathogenic Gram-negative bacterial species that infects a wide variety of animals and humans. A notable morphological feature of many isolates is the extracellular capsule. The ability to remove the capsule by treatment with certain glycosidases has been utilized to discern various capsular types called A, D and F. Based on this preliminary evidence, these microbes have capsules made of glycosaminoglycans, linear polysaccharides composed of repeating disaccharide units containing an amino sugar. Glycosaminoglycans are also abundant components of the vertebrate extracellular matrix. It has been shown previously that the major Type A capsular material was hyaluronan (hyaluronic acid). We report that the Type D polymer is an unmodified heparin (N-acetylheparosan) with a -->4)-beta-D-Glcp-UA-(1-->4)-alpha-D-Glcp-NAc-(1--> repeating unit and the Type F polymer is an unmodified chondroitin with a -->4)-beta-D-Glcp-UA-(1-->3)-beta-D-Galp-NAc-(1--> repeating unit. The monosaccharide compositions, disaccharide profiles, and 1H NMR analyses are consistent with these identifications. The molecular size of the Pasteurella polymers is approximately 100-300 kDa as determined by gel electrophoresis and multi-angle laser light scattering; this size is much greater than the 10-30 kDa size of the analogous polymers isolated from animal tissues. The glycosaminoglycan capsular polymers are relatively non-immunogenic virulence factors that enhance microbial pathogenicity.
European Journal of Medicinal Chemistry | 2002
Guangli Yu; Nur Sibel Gunay; Robert J. Linhardt; Toshihiko Toida; Jawed Fareed; Debra Hoppensteadt; Hazar Shadid; Vito Ferro; Caiping Li; Kym Fewings; Maria C Palermo; Denis Podger
A yeast-derived phosphomannan mixture was chemically sulfonated and the composition and structure of the product mixture was studied. This phosphosulfomannan mixture, PI-88, is currently under clinical evaluation as an anti-cancer agent. Analysis using capillary electrophoresis demonstrated that PI-88 was a multi-component mixture. Gel permeation chromatography provided four fractions of PI-88 that contained components which differed in size from disaccharide to hexasaccharide, and by degree of sulfation. These fractions were characterised by spectroscopic and chromatographic methods and the structure of PI-88 is that expected based on the structure of the phosphomannan starting material. The anticoagulant activity of these fractions was evaluated and the structural requirements for activity are described.
Analytical Chemistry | 2009
Dipak Thakur; Tomas Rejtar; Barry L. Karger; Nathaniel Washburn; Carlos J. Bosques; Nur Sibel Gunay; Zachary Shriver; Ganesh Venkataraman
With the rapid growth of complex heterogeneous biological molecules, effective techniques that are capable of rapid characterization of biologics are essential to ensure the desired product characteristics. To address this need, we have developed a method for analysis of intact glycoproteins based on high-resolution capillary electrophoretic separation coupled to an LTQ-FT mass spectrometer. We evaluated the performance of this method on the alpha subunit of mouse cell line-derived recombinant human chorionic gonadotrophin (r-alpha hCG), a protein that is glycosylated at two sites and is part of the clinically relevant gonadotrophin family. Analysis of r-alpha hCG, using capillary electrophoresis (CE) with a separation time under 20 min, resulted in the identification of over 60 different glycoforms with up to nine sialic acids. High-resolution CE-Fourier transform mass spectrometry (FT-MS) allowed separation and analysis of not only intact glycoforms with different numbers of sialic acids but also intact glycoforms that differed by the number and extent of neutral monosaccharides. The high mass resolution of the FT-MS enabled a limited mass range to be targeted for the examination of the protein glycoforms, simplifying the analysis without sacrificing accuracy. In addition, the limited mass range resulted in a fast scan speed that enhanced the reproducibility of the relative quantitation of individual glycoforms. The intact glycoprotein analysis was complemented with the analysis of the tryptic glycopeptides and glycans of r-alpha hCG to enable the assignment of glycan structures to individual sites, resulting in a detailed characterization of the protein. Samples of r-alpha hCG obtained from a CHO cell line were also analyzed and briefly shown to be significantly different from the murine cell line product. Taken together, the results suggest that the CE coupled to high-resolution FT-MS can be one of the effective tools for in-process monitoring as well as for final product characterization.
Thrombosis Research | 2000
Guangli Yu; Laurie A. LeBrun; Nur Sibel Gunay; Debra Hoppensteadt; Jeanine M. Walenga; Jawed Fareed; Robert J. Linhardt
A synthetic pentasaccharide, containing an intact antithrombin III (ATIII) binding site that is in clinical studies a specific antifactor Xa agent, serves as a substrate for a heparin lyase (heparinase I, EC 4.2.2.7) from Flavobacterium heparinum. Heparinase I, currently being assessed as a heparin reversal agent, also reverses the antifactor Xa activity of this synthetic pentasaccharide by breaking it down to inactive disaccharide and trisaccharide products.
Journal of Chromatography A | 2003
Nur Sibel Gunay; Robert J. Linhardt
A capillary electrophoresis method for the separation of high-molecular-mass heparin oligosaccharides compatible with mass spectral detection was developed. Structurally defined heparin oligosaccharides ranging in size from tetrasaccharide to tetradecasaccharide were used to optimize the conditions. Applying normal and reversed polarity modes, these oligosaccharides were separated by CE under various conditions. Ammonium hydrogencarbonate (30 mM at pH 8.50) used as the running electrolyte system gave good separation efficiency and resolution in the normal polarity mode. Application of this method to the separation of complicated heparin oligosaccharide mixtures required the addition of electrolyte additives. Ammonium hydrogencarbonate (30 mM), containing triethylamine (10 mM), was useful for the separation of complex oligosaccharide mixtures. Run-to-run and day-to-day precision and limits of detection were established for these separations.
Glycoconjugate Journal | 1999
Balagurunathan Kuberan; Nur Sibel Gunay; Jonathan S. Dordick; Robert J. Linhardt
Glycoproteins commercially available in multi-gram quantities, were used to prepare milligram amounts of neoglycoproteins. The glycoproteins bromelain and bovine γ-globulin were proteolyzed to obtain glycopeptides or converted to a mixture of glycans through hydrazinolysis. The glycan mixture was structurally simplified by carbohydrate remodeling using exoglycosidases. Glycopeptides were biotinylated using N-hydroxysuccinimide activated-long chain biotin while glycoprotein-derived glycans were first reductively aminated with ammonium bicarbonate and then biotinylated. The resulting biotinylated carbohydrates were structurally characterized and then bound to streptavidin to afford neoglycoproteins. The peptidoglycan component of raw, unbleached heparin (an intermediate in the manufacture of heparin) was similarly biotinylated and bound to streptavidin to obtain milligram amounts of a heparin neoproteoglycan. The neoglycoconjugates prepared contain well defined glycan chains at specific locations on the streptavidin core and should be useful for the study of protein-carbohydrate interactions and affinity separations.
Analytical and Bioanalytical Chemistry | 2012
Jennifer Ozug; Steve Wudyka; Nur Sibel Gunay; Daniela Beccati; Jonathan C. Lansing; Jing Wang; Ishan Capila; Zachary Shriver; Ganesh Kaundinya
Low-molecular-weight heparins (LMWHs) are produced from heparin by various depolymerization strategies, which result in a reduction of the average molecular weight of the polysaccharide chains, a reduction of the anti-factor IIa activity (and a concomitant increase in the anti-factor Xa/anti-factor IIa ratio), and introduction of process-related structural signatures. Numerous techniques have been developed to characterize LMWHs and to measure the type and extent of structural modifications that are introduced as a function of the depolymerization process. We present here an analysis of the tetrasaccharide pool of enoxaparin sodium, a LMWH produced by chemical β-elimination of heparin benzyl ester. We identify the predominant sequences present within the tetrasaccharide pool and demonstrate that this pool provides a sensitive, specific readout of the physicochemical process conditions used to generate enoxaparin sodium.
Analytical and Bioanalytical Chemistry | 2014
Fei Yu; Sucharita Roy; Enrique Arevalo; John Schaeck; Jason Wang; Kimberly Holte; Jay Duffner; Nur Sibel Gunay; Ishan Capila; Ganesh Kaundinya
The binding affinity and specificity of heparin to proteins is widely recognized to be sulfation-pattern dependent. However, for the majority of heparin-binding proteins (HBPs), it still remains unclear what moieties are involved in the specific binding interaction. Here, we report our study using saturation transfer difference (STD) nuclear magnetic resonance (NMR) to map out the interactions of synthetic heparin oligosaccharides with HBPs, such as basic fibroblast growth factor (FGF2) and fibroblast growth factor 10 (FGF10), to provide insight into the critical epitopes of heparin ligands involved. The irradiation frequency of STD NMR was carefully chosen to excite the methylene protons so that enhanced sensitivity was obtained for the heparin–protein complex. We believe this approach opens up additional application avenues to further investigate heparin–protein interactions.