Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nuran Ercal is active.

Publication


Featured researches published by Nuran Ercal.


Free Radical Biology and Medicine | 2000

CAN ANTIOXIDANTS BE BENEFICIAL IN THE TREATMENT OF LEAD POISONING

Hande Gurer; Nuran Ercal

Recent studies have shown that lead causes oxidative stress by inducing the generation of reactive oxygen species, reducing the antioxidant defense system of cells via depleting glutathione, inhibiting sulfhydryl-dependent enzymes, interfering with some essential metals needed for antioxidant enzyme activities, and/or increasing susceptibility of cells to oxidative attack by altering the membrane integrity and fatty acid composition. Consequently, it is plausible that impaired oxidant/antioxidant balance can be partially responsible for the toxic effects of lead. Where enhanced oxidative stress contributes to lead-induced toxicity, restoration of a cells antioxidant capacity appears to provide a partial remedy. Several studies are underway to determine the effect of antioxidant supplementation following lead exposure. Data suggest that antioxidants may play an important role in abating some hazards of lead. To explain the importance of using antioxidants in treating lead poisoning the following topics are addressed: (i) Oxidative damage caused by lead poisoning; (ii) conventional treatment of lead poisoning and its side effects; and (iii) possible protective effects of antioxidants in lead toxicity.


Toxicology | 1998

Antioxidant effects of N-acetylcysteine and succimer in red blood cells from lead-exposed rats

Hande Gurer; Hilal Özgüneş; Rachel Neal; Douglas R. Spitz; Nuran Ercal

This study examined whether lead-induced alterations in selected parameters that are indicative of oxidative stress accompany the toxic effects of lead in red blood cells (RBCs) in vivo. It also explored the possibility that treatment with N-acetylcysteine (NAC) or succimer (meso-2,3-dimercaptosuccinic acid) was capable of reversing parameters indicative of lead-induced oxidative stress. Fisher 344 rats were given 2000 ppm lead acetate in their drinking water for 5 weeks. The lead was then removed and the animals were given NAC (800 mg/kg/day) or succimer (90 mg/kg/day) in their drinking water for 1 week, after which the RBCs were harvested. Animals not given lead and those given lead, but not NAC or succimer, served as negative and positive controls, respectively. At the end of the experiment, blood-lead levels were 35 +/- 4 microg/dl in lead-treated animals, which were reduced to 2.5 +/- 1 microg/dl by treatment with succimer and to 25 +/- 3 microg/dl by treatment with NAC. Lead-exposed animals demonstrated signs of anemia as evidenced by anisocytosis, poikilocytosis, and alterations in hemoglobin, hematocrit, and mean corpuscular volume. Lipid peroxidation, as evidenced by increased malondialdehyde (MDA) content, as well as decreases in reduced glutathione (GSH) and increases in catalase and glucose 6-phosphate dehydrogenase (G6PD) activity were noted in RBCs from lead-treated rats, suggesting that the lead induced oxidative stress. In addition, a significant reduction in blood delta-aminolevulinic acid dehydratase (ALAD) activity suggested that accumulation and autooxidation of delta-aminolevulinic acid might contribute to lead-induced oxidative stress. Treatment with either NAC or succimer reversed lead-induced alterations in MDA and GSH content, but only succimer appeared to partially restore ALAD activity. These results provide in vivo evidence supporting the hypothesis that lead induces oxidative stress in RBCs, which is reversible by treatment with a thiol antioxidant (NAC), as well as a chelating agent (succimer).


Free Radical Biology and Medicine | 1996

In vivo indices of oxidative stress in lead-exposed C57BL/6 mice are reduced by treatment with meso-2,3-Dimercaptosuccinic Acid or N-acetylcysteine

Nuran Ercal; Piyanee Treeratphan; Terese C. Hammond; Richard H. Matthews; Neil H. Grannemann; Douglas R. Spitz

Knowledge of leads capacity to disrupt the prooxidant/antioxidant balance within mammalian tissues suggests that definitive therapy for chronic lead poisoning should encompass both chelating and antioxidant actions. The dithiol meso-2,3-Dimercaptosuccinic Acid (DMSA) is the first orally administered metal chelating agent to receive U.S. Food and Drug Administration (FDA) approval for the treatment of childhood plumbism and possesses the potential to function as an antioxidant by removing lead from the site of deleterious oxidation reactions. Five weeks of lead exposure was found to deplete glutathione (GSH) levels, increase oxidized glutathione (GSSG), and promote malondialdehyde (MDA) production in both liver and brain samples taken from C57BL/6 mice. GSH levels increased and GSSG and MDA levels decreased in groups of lead-exposed mice that received 1 mmol/kg DMSA or 5.5 mmol/kg N-acetylcysteine (NAC) for 7 d prior to sacrifice. Treatment with DMSA caused a reduction in blood, liver, and brain lead levels consistent with its function as a chelating agent, while treatment with NAC did not reduce these lead levels. However, NAC did cause a reduction in indices of oxidative stress in both brain and liver samples, which implies that this synthetic thiol-containing antioxidant is capable of abrogating lead-induced oxidative stress in vivo. Overall, these results suggest that lead-induced oxidative stress in vivo can be mitigated by pharmacologic interventions, which encompass both chelating as well as thiol-mediated antioxidant functions.


Brain Research | 2005

HIV-1 viral proteins gp120 and Tat induce oxidative stress in brain endothelial cells

Tulin O. Price; Nuran Ercal; Ryota Nakaoke; William A. Banks

The blood-brain barrier (BBB) has an important role in the development of AIDS dementia. The HIV-1 envelope glycoprotein (gp120) and transregulatory protein (Tat) of HIV-1 are neurotoxic and cytotoxic and have been implicated in the development of HIV dementia. They are known to cause oxidative stress and are associated with disruption of the BBB. Here, we used an immortalized endothelial cell line from rat brain capillaries, RBE4, to determine whether gp120 and Tat can induce oxidative stress in an in vitro model of the BBB. RBE4 cells were exposed to gp120 or Tat and the levels of reduced glutathione (GSH), oxidized glutathione (GSSG), catalase (CAT) activity, glutathione peroxidase (GPx) activity, and glutathione reductase (GR) activity, and malondialdehyde (MDA) used as measures of oxidative stress. Both gp120 and Tat significantly decreased the levels of intracellular GSH, GPx, and GR and increased the levels of MDA in RBE4 cells, showing that the cells were oxidatively challenged. The ratio of GSH/GSSG, a widely accepted indicator of oxidative stress, was also significantly decreased. These studies show that both of these viral proteins can induce oxidative stress in immortalized BBB endothelial cells.


Toxicology | 1998

Nicotine enantiomers and oxidative stress

Deniz Yildiz; Nuran Ercal; Daniel W. Armstrong

Nicotine affects a variety of cellular processes ranging from induction of gene expression to secretion of hormones and modulation of enzymatic activities. The objective of this study was to characterize the toxicity of nicotine enantiomers as well as their ability to induce oxidative stress in an in vitro model using Chinese hamster ovary (CHO) cells. Colony formation assay has demonstrated that (-)-nicotine is the more toxic of the enantiomers. At 6 mM concentrations, (-)-nicotine was found to be approximately 28- and 19-fold more potent than (+)-, and (+/-)-nicotine (racemic), respectively. Results also indicated that the toxicity of (+/-)-nicotine is higher than that of (+)-nicotine. (-)-Nicotine at a 10 mM concentration substantially decreased glutathione (GSH) levels (46% decrease). In addition, a 3-fold increase in malondialdehyde (MDA) level was evident in cells after exposure to 10 mM (-)-nicotine. Increased lactate dehydrogenase (LDH) activities in the media demonstrated that cellular membrane integrity was disturbed in nicotine treated cells. In the presence of superoxide dismutase (SOD) and catalase (CAT), the LDH activities returned to control value in 24 h with all concentrations of (-)-, (+)-, and (+/-)-nicotine. The decreases in LDH activities in the presence of the radical scavenging enzymes SOD and CAT suggest that membrane damage may be due to free radical generation.


Free Radical Biology and Medicine | 1999

Antioxidant Role of α-lipoic Acid in Lead Toxicity

Hande Gurer; Hilal Özgüneş; Serdar Oztezcan; Nuran Ercal

The assumption of oxidative stress as a mechanism in lead toxicity suggests that antioxidants might play a role in the treatment of lead poisoning. The present study was designed to investigate the efficacy of lipoic acid (LA) in rebalancing the increased prooxidant/antioxidant ratio in lead-exposed Chinese hamster ovary (CHO) cells and Fischer 344 rats. Furthermore, LAs ability to decrease lead levels in the blood and tissues of lead-treated rats was examined. LA administration resulted in a significant improvement in the thiol capacity of cells via increasing glutathione levels and reducing malondialdehyde levels in the lead-exposed cells and animals, indicating a strong antioxidant shift on lead-induced oxidative stress. Furthermore, administration of LA after lead treatment significantly decreased catalase and red blood cell glucose-6-phosphate dehydrogenase activity. In vitro administration of LA to cultures of CHO cells significantly increased cell survival, that was inhibited by lead treatment in a concentration- dependent manner. Administration of LA was not effective in decreasing blood or tissue lead levels compared to a well-known chelator, succimer, that was able to reduce them to control levels. Hence, LA seems to be a good candidate for therapeutic intervention of lead poisoning, in combination with a chelator, rather than as a sole agent.


Brain Research | 2005

Effects of N-acetylcysteine amide (NACA), a novel thiol antioxidant against glutamate-induced cytotoxicity in neuronal cell line PC12

Suman Penugonda; Suneetha Mare; Glenn Goldstein; William A. Banks; Nuran Ercal

Oxidative stress plays an important role in neuronal cell death associated with many different neurodegenerative conditions such as cerebral ischemia and Parkinsons disease. Elevated levels of glutamate are thought to be responsible for CNS disorders through various mechanisms causing oxidative stress induced by a nonreceptor-mediated oxidative pathway which blocks cystine uptake and results in depletion of intracellular glutathione (GSH). The newly designed amide form of N-acetylcysteine (NAC), N-acetylcysteine amide (NACA), was assessed for its ability to protect PC12 cells against oxidative toxicity induced by glutamate. NACA was shown to protect PC12 cells from glutamate (Glu) toxicity, as evaluated by LDH and MTS assays. NACA prevented glutamate-induced intracellular GSH loss. In addition, NACA restored GSH synthesis in a Glu (10 mM) plus buthionine-sulfoximine (BSO) (0.2 mM)-treated group, indicating that the intracellular GSH increase is independent of gamma-GSC (gamma-glutamylcysteinyl synthetase). The increase in levels of reactive oxygen species (ROS) induced by glutamate was significantly decreased by NACA. Measurement of malondialdehyde (MDA) showed that NACA reduced glutamate-induced elevations in levels of lipid peroxidation by-products. These results demonstrate that NACA can protect PC12 cells against glutamate cytotoxicity by inhibiting lipid peroxidation, and scavenging ROS, thus preserving intracellular GSH.


Free Radical Biology and Medicine | 2010

HIV proteins (gp120 and Tat) and methamphetamine in oxidative stress-induced damage in the brain: Potential role of the thiol antioxidant N-acetylcysteine amide

Atrayee Banerjee; Xinsheng Zhang; Kalyan Reddy Manda; William A. Banks; Nuran Ercal

An increased risk of HIV-1 associated dementia (HAD) has been observed in patients abusing methamphetamine (METH). Since both HIV viral proteins (gp120, Tat) and METH induce oxidative stress, drug abusing patients are at a greater risk of oxidative stress-induced damage. The objective of this study was to determine if N-acetylcysteine amide (NACA) protects the blood brain barrier (BBB) from oxidative stress-induced damage in animals exposed to gp120, Tat and METH. To study this, CD-1 mice pre-treated with NACA/saline, received injections of gp120, Tat, gp120+Tat or saline for 5days, followed by three injections of METH/saline on the fifth day, and sacrificed 24h after the final injection. Various oxidative stress parameters were measured, and animals treated with gp120+Tat+Meth were found to be the most challenged group, as indicated by their GSH and MDA levels. Treatment with NACA significantly rescued the animals from oxidative stress. Further, NACA-treated animals had significantly higher expression of TJ proteins and BBB permeability as compared to the group treated with gp120+Tat+METH alone, indicating that NACA can protect the BBB from oxidative stress-induced damage in gp120, Tat and METH exposed animals, and thus could be a viable therapeutic option for patients with HAD.


Journal of Alzheimer's Disease | 2012

Extra virgin olive oil improves learning and memory in SAMP8 mice.

Susan A. Farr; Tulin O. Price; Ligia J. Dominguez; Antonio Motisi; Filippo Saiano; Michael L. Niehoff; John E. Morley; William A. Banks; Nuran Ercal; Mario Barbagallo

Polyphenols are potent antioxidants found in extra virgin olive oil (EVOO); antioxidants have been shown to reverse age- and disease-related learning and memory deficits. We examined the effects of EVOO on learning and memory in SAMP8 mice, an age-related learning/memory impairment model associated with increased amyloid-β protein and brain oxidative damage. We administered EVOO, coconut oil, or butter to 11 month old SAMP8 mice for 6 weeks. Mice were tested in T-maze foot shock avoidance and one-trial novel object recognition with a 24 h delay. Mice which received EVOO had improved acquisition in the T-maze and spent more time with the novel object in one-trial novel object recognition versus mice which received coconut oil or butter. Mice that received EVOO had improve T-maze retention compared to the mice that received butter. EVOO increased brain glutathione levels suggesting reduced oxidative stress as a possible mechanism. These effects plus increased glutathione reductase activity, superoxide dismutase activity, and decreased tissue levels of 4-hydroxynoneal and 3-nitrotyrosine were enhanced with enriched EVOO (3 × and 5 × polyphenols concentration). Our findings suggest that EVOO has beneficial effects on learning and memory deficits found in aging and diseases, such as those related to the overproduction of amyloid-β protein, by reversing oxidative damage in the brain, effects that are augmented with increasing concentrations of polyphenols in EVOO.


Current HIV Research | 2006

The Blood-Brain Barrier in NeuroAIDS

Wiliam A. Banks; Nuran Ercal; Tulin O. Price

Nearly every aspect of blood-brain barrier (BBB) function is involved in or affected by HIV-1. The disruption of the BBB tends to be minimal and is not likely the mechanism by which infected immune cells and virus enter the brain. Instead, immune cells, virus and viral proteins likely activate brain endothelial cells and enable their own passage across the BBB by way of highly regulated processes such as diapedesis and adsorptive endocytosis. Viral proteins and cytokines can enter the CNS from the blood and provide a mechanism by which HIV-1 can affect CNS function independent of viral transport. Brain endothelial cells can also secrete neuroimmunoactive substances when stimulated by HIV-1, gp120, and Tat. Efflux systems such as p-glycoprotein transport anti-virals in the brain-to-blood direction, thus hampering effective accumulation of drug by the CNS. Overall, the BBB plays a major role in establishing and maintaining virus within the CNS and neuroAIDS.

Collaboration


Dive into the Nuran Ercal's collaboration.

Top Co-Authors

Avatar

Shakila Tobwala

Missouri University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atrayee Banerjee

Missouri University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Rachel Neal

Missouri University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Xinsheng Zhang

Missouri University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Daniel W. Armstrong

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Hande Gurer

Missouri University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Linu Abraham

Missouri University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge