Nurhanani Razali
University of Malaya
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nurhanani Razali.
International Journal of Molecular Sciences | 2014
Jameel R. Al-Obaidi; Yusmin Mohd-Yusuf; Nurhanani Razali; Jaime Jacqueline Jayapalan; Chin-Chong Tey; Normahnani Md-Noh; Sarni Binti Mat Junit; Rofina Yasmin Othman; Onn Haji Hashim
Basal stem rot is a common disease that affects oil palm, causing loss of yield and finally killing the trees. The disease, caused by fungus Ganoderma boninense, devastates thousands of hectares of oil palm plantings in Southeast Asia every year. In the present study, root proteins of healthy oil palm seedlings, and those infected with G. boninense, were analyzed by 2-dimensional gel electrophoresis (2-DE). When the 2-DE profiles were analyzed for proteins, which exhibit consistent significant change of abundance upon infection with G. boninense, 21 passed our screening criteria. Subsequent analyses by mass spectrometry and database search identified caffeoyl-CoA O-methyltransferase, caffeic acid O-methyltransferase, enolase, fructokinase, cysteine synthase, malate dehydrogenase, and ATP synthase as among proteins of which abundances were markedly altered.
Genes and Nutrition | 2010
Nurhanani Razali; Azlina Abdul Aziz; Sarni Binti Mat Junit
Tamarindus indicaL. (T. indica) or locally known as asam jawa belongs to the family of Leguminosae. The fruit pulp had been reported to have antioxidant activities and possess hypolipidaemic effects. In this study, we attempted to investigate the gene expression patterns in human hepatoma HepG2 cell line in response to treatment with low concentration of the fruit pulp extracts. Microarray analysis using Affymetrix Human Genome 1.0 S.T arrays was used in the study. Microarray data were validated using semi-quantitative RT–PCR and real-time RT–PCR. Amongst the significantly up-regulated genes were those that code for the metallothioneins (MT1M, MT1F, MT1X) and glutathione S-transferases (GSTA1, GSTA2, GST02) that are involved in stress response. APOA4, APOA5, ABCG5 and MTTP genes were also significantly regulated that could be linked to hypolipidaemic activities of the T. indica fruit pulp.
BMC Complementary and Alternative Medicine | 2015
Nurhanani Razali; Sarni Binti Mat Junit; Azhar Ariffin; Nur Siti Fatimah Ramli; Azlina Abdul Aziz
BackgroundTamarindus indica L. (T. indica) or locally known as “asam jawa” belongs to the family Leguminosae. T. indica seeds as by-products from the fruits were previously reported to contain high polyphenolic content. However, identification of their bioactive polyphenols using recent technologies is less well researched but nonetheless important. Hence, it was the aim of this study to provide further information on the polyphenolic content and antioxidant activities as well as to identify and quantify its bioactive polyphenols.MethodsT. indica seeds were extracted with methanol and were then fractionated with different compositions of hexane, ethyl acetate and methanol. Polyphenolic contents were measured using Folin-Ciocalteu assay while antioxidant activities were measured using DPPH radical scavenging and ferric reducing (FRAP) activities. The cytotoxic activities of the crude extract and the active fraction were evaluated in HepG2 cells using MTT assay. The cells were then pre-treated with the IC20 concentrations and induced with H2O2 before measuring their cellular antioxidant activities including FRAP, DPPH, lipid peroxidation, ROS generation and antioxidant enzymes, SOD, GPx and CAT. Analyses of polyphenols in the crude extract and its active fraction were done using UHPLC and NMR.ResultsAmongst the 7 isolated fractions, fraction F3 showed the highest polyphenolic content and antioxidant activities. When HepG2 cells were treated with fraction F3 or the crude extract, the former demonstrated higher antioxidant activities. F3 also showed stronger inhibition of lipid peroxidation and ROS generation, and enhanced activities of SOD, GPx and CAT of HepG2 cells following H2O2-induced oxidative damage. UHPLC analyses revealed the presence of catechin, procyanidin B2, caffeic acid, ferulic acid, chloramphenicol, myricetin, morin, quercetin, apigenin and kaempferol, in the crude seed extract of T. indica. UHPLC and NMR analyses identified the presence of caffeic acid in fraction F3. Our studies were the first to report caffeic acid as the active polyphenol isolated from T. indica seeds which likely contributed to the potent antioxidant defense system of HepG2 cells.ConclusionResults from this study indicate that caffeic acid together with other polyphenols in T. indica seeds can enhance the antioxidant activities of treated HepG2 cells which can provide protection against oxidative damage.
PeerJ | 2015
Nurhanani Razali; Azlina Abdul Aziz; Chor Yin Lim; Sarni Binti Mat Junit
The leaf extract of Tamarindus indica L. (T. indica) had been reported to possess high phenolic content and showed high antioxidant activities. In this study, the effects of the antioxidant-rich leaf extract of the T. indica on lipid peroxidation, antioxidant enzyme activities, H2O2-induced ROS production and gene expression patterns were investigated in liver HepG2 cells. Lipid peroxidation and ROS production were inhibited and the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase was enhanced when the cells were treated with the antioxidant-rich leaf extract. cDNA microarray analysis revealed that 207 genes were significantly regulated by at least 1.5-fold (p < 0.05) in cells treated with the antioxidant-rich leaf extract. The expression of KNG1, SERPINC1, SERPIND1, SERPINE1, FGG, FGA, MVK, DHCR24, CYP24A1, ALDH6A1, EPHX1 and LEAP2 were amongst the highly regulated. When the significantly regulated genes were analyzed using Ingenuity Pathway Analysis software, “Lipid Metabolism, Small Molecule Biochemistry, Hematological Disease” was the top biological network affected by the leaf extract, with a score of 36. The top predicted canonical pathway affected by the leaf extract was the coagulation system (P < 2.80 × 10−6) followed by the superpathway of cholesterol biosynthesis (P < 2.17 × 10−4), intrinsic prothrombin pathway (P < 2.92 × 10−4), Immune Protection/Antimicrobial Response (P < 2.28 × 10−3) and xenobiotic metabolism signaling (P < 2.41 × 10−3). The antioxidant-rich leaf extract of T. indica also altered the expression of proteins that are involved in the Coagulation System and the Intrinsic Prothrombin Activation Pathway (KNG1, SERPINE1, FGG), Superpathway of Cholesterol Biosynthesis (MVK), Immune protection/antimicrobial response (IFNGR1, LEAP2, ANXA3 and MX1) and Xenobiotic Metabolism Signaling (ALDH6A1, ADH6). In conclusion, the antioxidant-rich leaf extract of T. indica inhibited lipid peroxidation and ROS production, enhanced antioxidant enzyme activities and significantly regulated the expression of genes and proteins involved with consequential impact on the coagulation system, cholesterol biosynthesis, xenobiotic metabolism signaling and antimicrobial response.
PeerJ | 2017
Nur Siti Fatimah Ramli; Sarni Binti Mat Junit; Ng Khoon Leong; Nurhanani Razali; Jaime Jacqueline Jayapalan; Azlina Abdul Aziz
Background Synthesis of thyroid hormones and regulation of their metabolism involve free radicals that may affect redox balance in the body. Thyroid disorders causing variations in the levels of thyroid hormones may alter cellular oxidative stress. The aim of this study was to measure the antioxidant activities and biomarkers of oxidative stress in serum and red blood cells (RBC) of patients with benign and malignant thyroid disorders and to investigate if changes in the antioxidant activities in these patients were linked to alterations in genes encoding the antioxidant enzymes. Methods Forty-one patients with thyroid disorders from University of Malaya Medical Centre were recruited. They were categorised into four groups: multinodular goitre (MNG) (n = 18), follicular thyroid adenoma (FTA) (n = 7), papillary thyroid cancer (PTC) (n = 10), and follicular thyroid cancer (FTC) (n = 6). Serum and RBC of patients were analysed for antioxidant activities, antioxidant enzymes, and biomarkers of oxidative stress. Alterations in genes encoding the antioxidant enzymes were analysed using whole exome sequencing and PCR–DNA sequencing. Results Patients with thyroid disorders had significantly higher serum superoxide dismutase (SOD) and catalase (CAT) activities compared to control, but had lower activities in RBC. There were no significant changes in serum glutathione peroxidase (GPx) activity. Meanwhile, GPx activity in RBC was reduced in PTC and FTC, compared to control and the respective benign groups. Antioxidant activities in serum were decreased in the thyroid disorder groups when compared to the control group. The levels of malondialdehyde (MDA) were elevated in the serum of FTA group when compared to controls, while in the RBC, only the MNG and PTC groups showed higher MDA equivalents than control. Serum reactive oxygen species (ROS) levels in PTC group of both serum and RBC were significantly higher than control group. Whole exome sequencing has resulted in identification of 49 single nucleotide polymorphisms (SNPs) in MNG and PTC patients and their genotypic and allelic frequencies were calculated. Analyses of the relationship between serum enzyme activities and the total SNPs identified in both groups revealed no correlation. Discussion Different forms of thyroid disorders influence the levels of antioxidant status in the serum and RBC of these patients, implying varying capability of preventing oxidative stress. A more comprehensive study with a larger target population should be done in order to further evaluate the relationships between antioxidant enzymes gene polymorphisms and thyroid disorders, as well as strengthening the minor evidences provided in literatures.
PeerJ | 2016
Kin Weng Kong; Azlina Abdul Aziz; Nurhanani Razali; Norhaniza Aminuddin; Sarni Binti Mat Junit
Background Barringtonia racemosa is a medicinal plant belonging to the Lecythidaceae family. The water extract of B. racemosa leaf (BLE) has been shown to be rich in polyphenols. Despite the diverse medicinal properties of B. racemosa, information on its major biological effects and the underlying molecular mechanisms are still lacking. Methods In this study, the effect of the antioxidant-rich BLE on gene expression in HepG2 cells was investigated using microarray analysis in order to shed more light on the molecular mechanism associated with the medicinal properties of the plant. Results Microarray analysis showed that a total of 138 genes were significantly altered in response to BLE treatment (p < 0.05) with a fold change difference of at least 1.5. SERPINE1 was the most significantly up-regulated gene at 2.8-fold while HAMP was the most significantly down-regulated gene at 6.5-fold. Ingenuity Pathways Analysis (IPA) revealed that “Cancer, cell death and survival, cellular movement” was the top network affected by the BLE with a score of 44. The top five canonical pathways associated with BLE were Methylglyoxal Degradation III followed by VDR/RXR activation, TR/RXR activation, PXR/RXR activation and gluconeogenesis. The expression of genes that encode for enzymes involved in methylglyoxal degradation (ADH4, AKR1B10 and AKR1C2) and glycolytic process (ENO3, ALDOC and SLC2A1) was significantly regulated. Owing to the Warburg effect, aerobic glycolysis in cancer cells may increase the level of methylglyoxal, a cytotoxic compound. Conclusions BLE has the potential to be developed into a novel chemopreventive agent provided that the cytotoxic effects related to methylglyoxal accumulation are minimized in normal cells that rely on aerobic glycolysis for energy supply.
Food Chemistry | 2008
Nurhanani Razali; Rasyidah Razab; Sarni Binti Mat Junit; Azlina Abdul Aziz
Food Chemistry | 2012
Nurhanani Razali; Sarni Mat-Junit; Amirah Faizah Abdul-Muthalib; Senthilkumar Subramaniam; Azlina Abdul-Aziz
Genes and Nutrition | 2011
Shaghayegh Khaleghi; Azlina Abdul Aziz; Nurhanani Razali; Sarni Binti Mat Junit
Journal of Applied Phycology | 2017
Siti Rokhiyah Ahmad Usuldin; Jameel R. Al-Obaidi; Nurhanani Razali; Sarni Binti Mat Junit; Muhamad Johnny Ajang; Siti Nahdatul Isnaini Said Hussin; Shahlizah Sahul Hamid; Nursyuhaida Mohd Hanafi; Ahmad Nor Hafzan Mat Roni; Norihan Mohd Saleh