Nuria Ferrol
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nuria Ferrol.
New Phytologist | 2012
Emilie Tisserant; Annegret Kohler; P. Dozolme-Seddas; Raffaella Balestrini; Karim Benabdellah; Alexandre Colard; Daniel Croll; C. da Silva; S. K. Gomez; Raman Koul; Nuria Ferrol; Valentina Fiorilli; Damien Formey; Philipp Franken; Nicole Helber; Mohamed Hijri; Luisa Lanfranco; Erika Lindquist; Y. Liu; Mathilde Malbreil; Emmanuelle Morin; Julie Poulain; Harris Shapiro; D. van Tuinen; A. Waschke; Concepción Azcón-Aguilar; Guillaume Bécard; Paola Bonfante; Maria J. Harrison; Helge Küster
• The arbuscular mycorrhizal symbiosis is arguably the most ecologically important eukaryotic symbiosis, yet it is poorly understood at the molecular level. To provide novel insights into the molecular basis of symbiosis-associated traits, we report the first genome-wide analysis of the transcriptome from Glomus intraradices DAOM 197198. • We generated a set of 25,906 nonredundant virtual transcripts (NRVTs) transcribed in germinated spores, extraradical mycelium and symbiotic roots using Sanger and 454 sequencing. NRVTs were used to construct an oligoarray for investigating gene expression. • We identified transcripts coding for the meiotic recombination machinery, as well as meiosis-specific proteins, suggesting that the lack of a known sexual cycle in G. intraradices is not a result of major deletions of genes essential for sexual reproduction and meiosis. Induced expression of genes encoding membrane transporters and small secreted proteins in intraradical mycelium, together with the lack of expression of hydrolytic enzymes acting on plant cell wall polysaccharides, are all features of G. intraradices that are shared with ectomycorrhizal symbionts and obligate biotrophic pathogens. • Our results illuminate the genetic basis of symbiosis-related traits of the most ancient lineage of plant biotrophs, advancing future research on these agriculturally and ecologically important symbionts.
Fungal Genetics and Biology | 2011
Jacob Pérez-Tienda; P.S. Testillano; Raffaella Balestrini; Valentina Fiorilli; Concepción Azcón-Aguilar; Nuria Ferrol
In the symbiotic association of plants and arbuscular mycorrhizal (AM) fungi, the fungus delivers mineral nutrients, such as phosphate and nitrogen, to the plant while receiving carbon. Previously, we identified an NH(4)(+) transporter in the AM fungus Glomus intraradices (GintAMT1) involved in NH(4)(+) uptake from the soil when preset at low concentrations. Here, we report the isolation and characterization of a new G. intraradicesNH(4)(+) transporter gene (GintAMT2). Yeast mutant complementation assays showed that GintAMT2 encodes a functional NH(4)(+) transporter. The use of an anti-GintAMT2 polyclonal antibody revealed a plasma membrane location of GintAMT2. GintAMT1 and GintAMT2 were differentially expressed during the fungal life cycle and in response to N. In contrast to GintAMT1, GintAMT2 transcript levels were higher in the intraradical than in the extraradical fungal structures. However, transcripts of both genes were detected in arbuscule-colonized cortical cells. GintAMT1 expression was induced under low N conditions. Constitutive expression of GintAMT2 in N-limiting conditions and transitory induction after N re-supply suggests a role for GintAMT2 to retrieve NH(4)(+) leaked out during fungal metabolism.
Current Genetics | 2000
Nuria Ferrol; J. M. Barea; Concepción Azcón-Aguilar
Abstract To identify genes that encode plasma membrane H+-ATPases in the arbuscular mycorrhizal fungus Glomus mosseae two sets of degenerate primers matching highly conserved motifs present in all plant and fungal ATPases were designed. Nested PCR-amplification of G. mosseae genomic DNA using the designed degenerate primers was carried out. Sequence analysis of the cloned PCR products identified five different clones (GmHA1, GmHA2, GmHA3, GmHA4 and GmHA5) encoding putative plasma membrane H+-ATPases. Comparison of the deduced amino-acid sequences of GmHA1–GmHA5 indicate that GmHA1, GmHA3 and GmHA4 are highly identical, while GmHA2 and GmHA5 are more divergent. The evolutionary and functional significance of the divergence found among the different members of the H+-ATPase gene family in G. mosseae is discussed.
Phytochemistry Reviews | 2009
Nuria Ferrol; Manuel González-Guerrero; Ascensión Valderas; Karim Benabdellah; Concepción Azcón-Aguilar
This review provides an overview of the mechanisms evolved by arbuscular mycorrhizal (AM) fungi to survive in Cu-contaminated environments. These mechanisms include avoidance strategies to restrict entry of toxic levels of Cu into their cytoplasm, intracellular complexation of the metal in the cytosol and compartmentalization strategies. Through the activity of specific metal transporters, the excess of Cu is translocated to subcellular compartments, mainly vacuoles, where it would cause less damage. At the level of the fungal colony, AM fungi have also evolved compartmentalization strategies based on the accumulation of Cu into specific fungal structures, such as extraradical spores and intraradical vesicles. In addition to the avoidance and compartmentalization strategies, AM fungi have also mechanisms to combat the Cu-generated oxidative stress or to repair the damage induced.
Fungal Genetics and Biology | 2009
Karim Benabdellah; Miguel-Ángel Merlos; Concepción Azcón-Aguilar; Nuria Ferrol
Glutaredoxins (GRXs) are small proteins with glutathione-dependent disulfide oxidoreductase activity involved in cellular defense against oxidative stress. This work reports the identification and characterization of the first glomeromycotan dithiol glutaredoxin gene from the fungus Glomus intraradices. The corresponding gene, named GintGRX1, shares high sequence similarity with previously described fungal GRXs. GintGRX1 contains the characteristic dithiol active site CPYC. By using a yeast expression system, we found that GintGRX1 encodes a multifunctional protein with oxidoreductase, peroxidase and glutathione S-transferase activity. GintGRX1 partially reverted sensitivity to superoxide radicals of the Deltagrx1Deltagrx2Saccharomyces cerevisiae strain. GintGRX1 was transcriptionally regulated by paraquat but not by hydrogen peroxide. Copper induced an accumulation of reactive oxygen species in the extraradical mycelium of G. intraradices and up-regulation of GintGRX1 transcript levels. These data suggest a role for GintGRX1 in protecting the fungus against the oxidative damage induced directly by the superoxide anion or indirectly by copper.
Plant and Soil | 2002
Nuria Ferrol; J. M. Barea; Concepción Azcón-Aguilar
Bidirectional nutrient transfer between the plant and the fungus is a key feature of arbuscular mycorrhizal symbiosis. The major nutrients exchanged between the symbiotic partners are reduced carbon, assimilated through the plant photosynthesis and phosphate, taken up by the fungal hyphae exploring soil microhabitats. This nutrient exchange takes place across the symbiotic interfaces which are bordered by the plant and fungal plasma membranes. This review provides an overview of the current knowledge of the mechanisms underlying nutrient transport processes in the symbiosis, with special emphasis on recent developments in the molecular biology of the plant and fungal primary (H + -ATPases) and secondary transporters.
Mycorrhiza | 2010
Manuel González-Guerrero; Karim Benabdellah; Ascensión Valderas; Concepción Azcón-Aguilar; Nuria Ferrol
A full-length cDNA sequence putatively encoding an ATP-binding cassette (ABC) transporter (GintABC1) was isolated from the extraradical mycelia of the arbuscular mycorrhizal fungus Glomus intraradices. Bioinformatic analysis of the sequence indicated that GintABC1 encodes a 1513 amino acid polypeptide, containing two six-transmembrane clusters (TMD) intercalated with sequences characteristics of the nucleotide binding domains (NBD) and an extra N-terminus extension (TMD0). GintABC1 presents a predicted TMD0-(TMD-NBD)2 topology, typical of the multidrug resistance-associated protein subfamily of ABC transporters. Gene expression analyses revealed no difference in the expression levels of GintABC1 in the extra- vs the intraradical mycelia. GintABC1 was up-regulated by Cd and Cu, but not by Zn, suggesting that this transporter might be involved in Cu and Cd detoxification. Paraquat, an oxidative agent, also induced the transcription of GintABC1. These data suggest that redox changes may be involved in the transcriptional regulation of GintABC1 by Cd and Cu.
Archive | 2009
Manuel González-Guerrero; Karim Benabdellah; Nuria Ferrol; Concepción Azcón-Aguilar
Arbuscular mycorrhizal fungi are able to tolerate a wide range of metal concentrations in soils. A number of passive and active molecular processes are employed by these fungi to maintain metal homeostasis. The main passive mechanism is the binding of metals to the fungal walls, responsible for a significant percentage of the metal retained. Meanwhile in the cytosol, a number of chelators (metallothioneins, glutathione) bind the metals very efficiently. Heavy metal transporters collaborate with the intracellular chelators to actively reduce the levels of metal by pumping metal out of the cytosol. Additionally, the fungus strives to reduce the free radicals produced by heavy metals. In this chapter, we discuss the most recent progress in the identification and characterization of the elements involved in maintaining metal homeostasis in arbuscular mycorrhizal fungi, as well as how the heavy metal control systems of the plant are affected by the development of the symbiosis.
Journal of Chemical Ecology | 2014
Iván Fernández; M. Merlos; Juan A. López-Ráez; Ainhoa Martínez-Medina; Nuria Ferrol; C. Azcón; Paola Bonfante; Victor Flors; María J. Pozo
Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil fungi and most vascular plants. Modulation of the hormonal and transcriptional profiles, including changes related to defense signalling, has been reported in many host plants during AM symbioses. These changes have been often related to the improved stress tolerance common in mycorrhizal plants. However, results on the alterations in phytohormones content and their role on the symbiosis are controversial. Here, an integrative analysis of the response of phylogenetically diverse plants (i.e., tomato, soybean, and maize) to two mycorrhizal fungi -Funneliformis mosseae and Rhizophagus irregularis- was performed. The analysis of the defense-related hormones salicylic acid, abscisic acid, and jasmonates, and the expression of marker genes of the pathways they regulate, revealed significant changes in the roots of mycorrhizal plants. These changes depended on both the plant and the AM fungus (AMF) involved. However, general trends can be identified: roots associated with the most effective colonizer R. irregularis showed fewer changes in these defense-related traits, while the colonization by F. mosseae led to significant modifications in all plants tested. The up-regulation of the jasmonate pathway by F. mosseae was found to be highly conserved among the different plant species, suggesting an important role of jasmonates during this AM interaction. Our study evidences a strong influence of the AMF genotype on the modulation of host defense signalling, and offers hints on the role of these changes in the symbiosis.
Frontiers in Plant Science | 2014
Elisabeth Tamayo; Tamara Gómez-Gallego; Concepción Azcón-Aguilar; Nuria Ferrol
Arbuscular mycorrhizal fungi (AMF), belonging to the Glomeromycota, are soil microorganisms that establish mutualistic symbioses with the majority of higher plants. The efficient uptake of low mobility mineral nutrients by the fungal symbiont and their further transfer to the plant is a major feature of this symbiosis. Besides improving plant mineral nutrition, AMF can alleviate heavy metal toxicity to their host plants and are able to tolerate high metal concentrations in the soil. Nevertheless, we are far from understanding the key molecular determinants of metal homeostasis in these organisms. To get some insights into these mechanisms, a genome-wide analysis of Cu, Fe and Zn transporters was undertaken, making use of the recently published whole genome of the AMF Rhizophagus irregularis. This in silico analysis allowed identification of 30 open reading frames in the R. irregularis genome, which potentially encode metal transporters. Phylogenetic comparisons with the genomes of a set of reference fungi showed an expansion of some metal transporter families. Analysis of the published transcriptomic profiles of R. irregularis revealed that a set of genes were up-regulated in mycorrhizal roots compared to germinated spores and extraradical mycelium, which suggests that metals are important for plant colonization.