Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Núria López is active.

Publication


Featured researches published by Núria López.


Angewandte Chemie | 2015

A Stable Single-Site Palladium Catalyst for Hydrogenations

Gianvito Vilé; Davide Albani; Maarten Nachtegaal; Zupeng Chen; Dariya Dontsova; Markus Antonietti; Núria López; Javier Pérez-Ramírez

We report the preparation and hydrogenation performance of a single-site palladium catalyst that was obtained by the anchoring of Pd atoms into the cavities of mesoporous polymeric graphitic carbon nitride. The characterization of the material confirmed the atomic dispersion of the palladium phase throughout the sample. The catalyst was applied for three-phase hydrogenations of alkynes and nitroarenes in a continuous-flow reactor, showing its high activity and product selectivity in comparison with benchmark catalysts based on nanoparticles. Density functional theory calculations provided fundamental insights into the material structure and attributed the high catalyst activity and selectivity to the facile hydrogen activation and hydrocarbon adsorption on atomically dispersed Pd sites.


Journal of Chemical Physics | 1999

Adhesion energy of Cu atoms on the MgO(001) surface

Núria López; Francesc Illas; Notker Rösch; Gianfranco Pacchioni

We have studied theoretically the interaction of an isolated Cu atom adsorbed on the oxygen sites of the regular MgO (001) surface with the aim of providing an accurate estimate of the adhesion energy. We performed cluster model calculations using a variety of first principles quantum-chemical approaches; local (spin) density approximation [L(S)DA], density functionals that include density gradient corrections (GC-DF), hybrid density functional (B3LYP), and explicitly correlated wave functions. Various combinations of exchange-correlation functionals and different methods to introduce electron correlation, including MP2 and CCSD(T), have been considered. The dependence of the results on cluster and basis set size has been carefully checked. We found that the hybrid DF method, B3LYP, and explicitly correlated wave functions, CCSD(T), give similar results with an adhesion energy of about 0.40±0.05 eV; GC-DF methods suggest a higher binding energy of 0.6 eV. Therefore, Cu atoms can be considered to bind to o...


ChemPhysChem | 2008

Selective Homogeneous and Heterogeneous Gold Catalysis with Alkynes and Alkenes: Similar Behavior, Different Origin

Mónica García-Mota; Noemí Cabello; Feliu Maseras; Antonio M. Echavarren; Javier Pérez-Ramírez; Núria López

The development of new sustainable chemical processes requires the implementation of ultra-selective reaction processes. The enormous selectivity found for gold-based catalysts when applied in several reactions has opened new frontiers. For instance, the selective activation of alkynes is a common feature for both homogeneous and heterogeneous gold catalysts. Herein, we employ experimental and theoretical methods to assess the similarities and differences in the performance of homogeneous and heterogeneous gold catalysts. Alkynophilicity, the selective activation of alkynes, is found to have a thermodynamic origin in the heterogeneous case and a kinetic one for homogeneous catalysis. Complex enyne rearrangements require the more active homogeneous (single gold) catalyst because it has more electrophilic character than its heterogeneous (nanoparticle) counterpart.


Nano Letters | 2014

Theoretical Description of the Role of Halides, Silver, and Surfactants on the Structure of Gold Nanorods

Neyvis Almora-Barrios; Gerard Novell-Leruth; Peter Whiting; Luis M. Liz-Marzán; Núria López

Density functional theory simulations including dispersion provide an atomistic description of the role of different compounds in the synthesis of gold-nanorods. Anisotropy is caused by the formation of a complex between the surfactant, bromine, and silver that preferentially adsorbs on some facets of the seeds, blocking them from further growth. In turn, the nanorod structure is driven by the perferential adsorption of the surfactant, which induces the appearance of open {520} lateral facets.


Chemistry: A European Journal | 2014

From the Lindlar Catalyst to Supported Ligand‐Modified Palladium Nanoparticles: Selectivity Patterns and Accessibility Constraints in the Continuous‐Flow Three‐Phase Hydrogenation of Acetylenic Compounds

Gianvito Vilé; Neyvis Almora-Barrios; Sharon Mitchell; Núria López; Javier Pérez-Ramírez

Site modification and isolation through selective poisoning comprise an effective strategy to enhance the selectivity of palladium catalysts in the partial hydrogenation of triple bonds in acetylenic compounds. The recent emergence of supported hybrid materials matching the stereo- and chemoselectivity of the classical Lindlar catalyst holds promise to revolutionize palladium-catalyzed hydrogenations, and will benefit from an in-depth understanding of these new materials. In this work, we compare the performance of bare, lead-poisoned, and ligand-modified palladium catalysts in the hydrogenation of diverse alkynes. Catalytic tests, conducted in a continuous-flow three-phase reactor, coupled with theoretical calculations and characterization methods, enable elucidation of the structural origins of the observed selectivity patterns. Distinctions in the catalytic performance are correlated with the relative accessibility of the active site to the organic substrate, and with the adsorption configuration and strength, depending on the ensemble size and surface potentials. This explains the role of the ligand in the colloidally prepared catalysts in promoting superior performance in the hydrogenation of terminal and internal alkynes, and short-chain alkynols. In contrast, the greater accessibility of the active surface of the Pd-Pb alloy and the absence of polar groups are shown to be favorable in the conversion of alkynes containing long aliphatic chains and/or ketone groups. These findings provide detailed insights for the advanced design of supported nanostructured catalysts.


Chemcatchem | 2013

Silver Nanoparticles for Olefin Production: New Insights into the Mechanistic Description of Propyne Hydrogenation

Gianvito Vilé; David Baudouin; Ioannis N. Remediakis; Christophe Copéret; Núria López; Javier Pérez-Ramírez

The gas‐phase partial hydrogenation of propyne was investigated over supported Ag nanoparticles (2–20 nm in diameter) prepared by using different deposition methods, activation conditions, loadings, and carriers. The excellent selectivities to propene attained over the catalysts, exceeding 90 %, are independent of the particle size but the activity is maximal over approximately 4.5 nm Ag particles. Certain kinetic fingerprints of Ag, such as the positive dependence on the alkyne pressure, the relatively low reaction order in H2, and the low apparent activation energy, deviate from those of conventional hydrogenation metals such as Pd and Ni, questioning the applicability of the classical Horiuti–Polanyi scheme. Periodic dispersion‐corrected density functional theory (DFT‐D) calculations and microkinetic analysis demonstrate the occurrence of an associative mechanism, which features the activation of H2 on the adsorbed propyne at structural step sites. By using the atomistic Wulff model, the number of B5 sites available on the Ag nanoparticles was estimated to be maximal in the size range of 3.5–4.7 nm. The rate of propene production correlates with the density of B5 sites, which suggests that the latter are potential active centers for the reaction. This alternative pathway broadens the mechanistic diversity of hydrogenation reactions over metal surfaces and opens new directions for understanding metals that do not readily activate H2.


Chemcatchem | 2016

Advances in the Design of Nanostructured Catalysts for Selective Hydrogenation

Gianvito Vilé; Davide Albani; Neyvis Almora-Barrios; Núria López; Javier Pérez-Ramírez

Selective hydrogenations lay at the heart of many industrial processes. The archetypal catalysts for this class of reactions are generally prepared by ‘metal poisoning’ strategies: the active metal is protected and selectively deactivated with various compounds. This approach has been applied for decades, with limited understanding. Low product selectivity and presence of toxic elements in the catalyst pose severe constraints in the utilization of these materials in the future. Thus, to develop more sustainable catalysts, this field has recently gained momentum. This Review analyzes the concepts and frontiers that have been developed in the last decade: from nanostructuring less conventional metals in order to improve their ability to activate H2, to the use of oxides as active phases, from alloying, to the ensemble control in hybrid materials, and site isolation approaches in single‐site heterogeneous catalysts. Particular attention is given to the hydrogenation of alkynes and nitroarenes, two reactions at the core of the chemical industry, importantly applied in the manufacture of polymers, pharmaceuticals, nutraceuticals, and agrochemicals. The strategies here identified can be transposed to other relevant hydrogenations and can guide in the design of more advanced materials.


Nature Chemistry | 2012

In situ surface coverage analysis of RuO2-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis

Detre Teschner; Gerard Novell-Leruth; Ramzi Farra; Axel Knop-Gericke; Robert Schlögl; L. Szentmiklósi; Miguel A.G. Hevia; Hary Soerijanto; Reinhard Schomäcker; Javier Pérez-Ramírez; Núria López

In heterogeneous catalysis, rates with Arrhenius-like temperature dependence are ubiquitous. Compensation phenomena, which arise from the linear correlation between the apparent activation energy and the logarithm of the apparent pre-exponential factor, are also common. Here, we study the origin of compensation and find a similar dependence on the rate-limiting surface coverage term for each Arrhenius parameter. This result is derived from an experimental determination of the surface coverage of oxygen and chlorine species using temporal analysis of products and prompt gamma activation analysis during HCl oxidation to Cl(2) on a RuO(2) catalyst. It is also substantiated by theory. We find that compensation phenomena appear when the effect on the apparent activation energy caused by changes in surface coverage is balanced out by the entropic configuration contributions of the surface. This result sets a new paradigm in understanding the interplay of compensation effects with the kinetics of heterogeneously catalysed processes.


Journal of Chemical Physics | 2006

Bulk and surface oxygen vacancy formation and diffusion in single crystals, ultrathin films, and metal grown oxide structures

Javier Carrasco; Núria López; Francesc Illas; Hans-Joachim Freund

The neutral oxygen vacancy (OV) energy formation for bulk, subsurface sites at different depths from the surface and various surface sites has been estimated for single crystals, unsupported ultrathin films of MgO, CaO, and BaO, and MgO ultrathin films supported on Ag(001). From the calculated energy barriers for diffusion through the surface and from the surface to the bulk it is found that diffusion is a hindered event, especially for MgO. Nevertheless, diffusion from the terrace to step edges is largely favored while diffusion through terrace sites is less likely and surface to bulk has a very low probability. It is argued that this explains recent scanning tunneling microscopy images for MgO thin films supported on Ag(001) showing OV populating preferentially the step edge sites.


Chemistry: A European Journal | 2012

On the Mechanism Behind the Instability of Isoreticular Metal-Organic Frameworks (IRMOFs) in Humid Environments

Luca Bellarosa; Juan Manuel Castillo; Thijs J. H. Vlugt; Sofia Calero; Núria López

Increasing the resistance to humid environments is mandatory for the implementation of isoreticular metal-organic frameworks (IRMOFs) in industry. To date, the causes behind the sensitivity of [Zn(4)(μ(4)-O)(μ-bdc)(3)](8)(IRMOF-1; bdc=1,4-benzenedicarboxylate) to water remain still open. A multiscale scheme that combines Monte Carlo simulations, density functional theory and first-principles Born-Oppenheimer molecular dynamics on IRMOF-1 was employed to unravel the underlying atomistic mechanism responsible for lattice disruption. At very low water contents, H(2)O molecules are isolated in the lattice but provoke a dynamic opening of the terephthalic acid, and the lattice collapse occurs at about 6% water weight at room temperature. The ability of Zn to form fivefold coordination spheres and the increasing basicity of water when forming clusters are responsible for the displacement of the organic linker. The present results pave the way for synthetic challenges with new target linkers that might provide more robust IRMOF structures.

Collaboration


Dive into the Núria López's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Bellarosa

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge